GEORGE ANDREW’S RIFFLE PROBLEM

The problem appears as Exercise 2 on page 57 of George Andrew’s book *Number Theory* (Dover 1994). The problem refers to a deck of 2^n cards. We shall illustrate the problem and two solutions by using $n = 3$. It should be clear afterwards that the solutions work for any value of n. We shall label the cards in bold face as $0, 1, 2, 3, 4, 5, 6, 7$.

After the riffle the cards appear in the order $0, 7, 1, 6, 2, 5, 3, 4$.

So the riffle corresponds to the permutation π given by

$$\pi(0) = 0, \pi(1) = 2, \pi(2) = 4, \pi(3) = 6, \pi(4) = 7, \pi(5) = 5, \pi(6) = 3, \pi(7) = 1.$$

We have to prove that

$$\pi^{(4)}(j) = (\pi \circ \pi \circ \pi \circ \pi)(j) \quad j = 0, 1, 2, \ldots, 7.$$

In other words, after four such riffles, the deck of cards returns to its original order.

SOLUTION USING \mathbb{Z}_{15}.

We get a well-defined function on \mathbb{Z}_{15} by the formula $\phi(j) = 2j$. We relate the seven cards to the numbers in \mathbb{Z}_{15} as in the diagram below:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1

Notice that the cards opposite numbers t_1 and t_2 are identical if and only if $t_1 + t_2 = 15$. Since $2t_1 + 2t_2 = 30$, it follows that the cards opposite $2t_1$ and $2t_2$ are equally identical. It is now easy to check that the function $\phi(t) = 2t$ on \mathbb{Z}_{15} corresponds precisely to the permutation π above. But

$$\phi^{(4)}(t) = (\phi \circ \phi \circ \phi \circ \phi)(t) = 2^4 t \equiv t \pmod{15}.$$

The proof is complete!
SOLUTION USING BINARY ARITHMETIC

Now we represent the cards in binary arithmetic as:

000, 001, 010, 011, 100, 101, 110, 111

We shall use Greek letters to denote “words” in 0 and 1; for example, $\alpha = 01$. Given a word α we write α^* for the word in which every 0 in α is replaced by a 1, and every 1 in α is replaced by a 0. Notice that $\alpha + \alpha^*$ is the word consisting of all 1’s. We reinterpret the permutation π above in terms of words. For $x = 0, 1, 2, 3$ we have $\pi(x) = 2x$ and so

$$\pi(0\alpha) = \alpha0.$$

For $x = 4 + t$ with $t = 0, 1, 2, 3$, we have $\pi(x) = 8 - (2t + 1)$ and so

$$\pi(1\alpha) = 1000 - \alpha0 - 001 = \alpha^1.$$

You should now convince yourself that these formulas for π work in the general case for 2^n cards; from now on we shall suppose we are in the general case. The length of the word α is the number of letters in the word, and is denoted by $|\alpha|$. Thus $|011010| = 6$. Start calculating $\pi(2), \pi(3), \ldots$ for lots of words and you will soon conjecture the following Lemma (which we can prove by induction much more quickly than it took to guess the formulas!).

Lemma. For $n = |\alpha| + 1$, and for any word β (including the empty word) we have

$$\pi^{(n)}(\alpha0\beta) = \beta0\alpha, \quad \pi^{(n)}(\alpha1\beta) = \beta^*1\alpha^*.$$

Proof. We use induction on n. When $n = 1$, the word α is empty and the required equations are just the above equations for π. Suppose the result holds for n. Increase the length of α by one letter and we have to consider what happens for the four possible cases:

$$\alpha00\beta, \quad \alpha10\beta, \quad \alpha01\beta, \quad \alpha11\beta.$$

We have

$$\pi^{(n+1)}((\alpha0)0\beta) = \pi(\pi^{(n)}(\alpha0(0\beta))) = \pi((0\beta)0\alpha) = \beta0(\alpha0)$$

$$\pi^{(n+1)}((\alpha1)0\beta) = \pi(\pi^{(n)}(\alpha1(0\beta))) = \pi((0\beta)^*1\alpha^*) = \pi(1(\beta^*1\alpha^*)) = \beta0(\alpha1).$$
We leave you to check the other two cases. The result follows by the principle of Induction.

Notice that the argument does NOT exclude the case in which β is the empty word. So we have proved in particular that $\pi(n)(\alpha_0) = 0\alpha$ and $\pi(n)(\alpha_1) = 1\alpha^*$. Apply the permutation π once more and we see that the deck of cards does indeed return to its original order in $n + 1$ steps. There is a subtle point in the above argument. Why did we not go the whole hog and prove directly by induction on $|\alpha|$ that

$$\pi^{(n+1)}(\alpha_0) = \alpha_0, \quad \pi^{(n+1)}(\alpha_1) = \alpha_1$$

It is because if we mimic the above proof we need to know that the lemma holds not only for the empty word β but also when β has length 1. To prove the latter case bare hands we need to know that the lemma holds also when β has length 2. We keep chasing our tail and never catch it! We got round this by making the inductive statement apply to an arbitrary word β.

P.S. If you are into permutations you may like to tackle the (non-trivial) problem of breaking π down into its component disjoint cycles.