SECOND ORDER RECURRENCES VIA TWO-BY-TWO MATRICES

Consider the second order recurrence (or difference equation) given by

\[x_{n+1} = ax_n + bx_{n-1} \]

with \(x_0 = c_0, x_1 = c_1 \). To check various algebraic identities satisfied by the sequence \(x_n \) we can obtain an explicit (but messy) formula for \(x_n \) by first solving the characteristic equation \(\lambda^2 = a\lambda + b \), and then applying the initial conditions to the general solution. The verification of the algebraic identity may involve heavy algebra. But there is a more elegant method which uses \(2 \times 2 \) matrices; moreover this method suggests which kind of algebraic identities are available.

Write the recurrence as a linear system:

\[
\begin{bmatrix}
 x_{n+1} \\
 x_n
\end{bmatrix} =
\begin{bmatrix}
 a & b \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 x_n \\
 x_{n-1}
\end{bmatrix}
\]

or, more briefly, \(u_{n+1} = Au_n \). Notice that

\[
[u_{n+1} \ u_n] = A[u_n \ u_{n-1}].
\]

Iterate this equation (or apply induction) to get

\[
[u_{n+1} \ u_n] = A^{n-1}[u_2 \ u_1].
\]

Let’s begin with the nicest possible case, in which \(b = 1 \) and \(x_0 = 0, \) and \(x_1 = 1 \). Then we get \(A = [u_2 \ u_1] \) and so \([u_{n+1} \ u_n] = A^n. \) Thus

\[
\begin{bmatrix}
 x_{n+1} \\
 x_n
\end{bmatrix} = A^n
\]

and we immediately get

\[x_{n+1}x_{n-1} - x_n^2 = \det(A^n) = (\det A)^n = (-1)^n. \]

Notice that this equation holds for \textit{any} choice of \(a \) (not just the Fibonacci recurrence, \(x_{n+1} = x_n + x_{n-1} \)). We also have

\[A^{2n} = A^nA^n \]
and so
\[
\begin{bmatrix}
x_{2n+1} & x_{2n} \\
x_{2n} & x_{2n-1}
\end{bmatrix} =
\begin{bmatrix}
x_{n+1} & x_n \\
x_n & x_{n-1}
\end{bmatrix}
\begin{bmatrix}
x_{n+1} & x_n \\
x_n & x_{n-1}
\end{bmatrix}.
\]
This gives
\[x_{2n+1} = x_{n+1}^2 + x_n^2 \quad (*\text{)}
\]
and
\[x_{2n} = x_n(x_{n+1} + x_{n-1}) \quad (**\text{)}.
\]
Both of these equations hold for any choice of \(a\).

EXAMPLE Given that
\[
\frac{1}{1 - 2x - x^2} = \sum_{0}^{\infty} a_n x^n
\]
prove that
\[a_n^2 + a_{n+1}^2 = a_{2n+2}.
\]

Cross-multiply to get
\[1 = (1 - 2x - x^2)(a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots).
\]
Compare coefficients on each side to get \(a_0 = 1, a_2 = 2\) and
\[a_{n+1} = 2a_n + a_{n-1} \quad (n \geq 1).
\]
To get the recurrence to hold for \(n = 0\) we need to have \(a_{-1} = 2 - 2 = 0\).
Now let \(x_n = a_{n-1}\) so that we have \(x_0 = 0, x_1 = 1\) and \(x_{n+1} = 2x_n + x_{n-1}\).
From (*\text{)}, with \(n + 1\) in place of \(n\), we get
\[x_{2n+3} = x_{n+2}^2 + x_{n+1}^2
\]
and hence
\[a_{2n+2} = a_{n+1}^2 + a_n^2.
\]

We can make up lots more identities by using other index rules: for example
\[A^{2n} = A^{n+m} A^{n-m}, \quad A^{(k+1)n} = A^n A^{kn}
\]
and so on.
Now we start to allow more general cases. Suppose that we still have $b = 1$ but we have arbitrary starting values c_0 and c_1. With $c_2 = ac_1 + c_0$ we get
\[
\begin{bmatrix}
 x_{n+1} & x_n \\
 x_n & x_{n-1}
\end{bmatrix} = A^{n-1} \begin{bmatrix}
 c_2 & c_1 \\
 c_1 & c_0
\end{bmatrix}
\]
and hence
\[
x_{n+1}x_{n-1} - x_n^2 = (-1)^{n-1} (c_2c_0 - c_1^2).
\]
Notice that we can have $c_2c_0 - c_1^2 = 0$ when the point (c_0, c_1) lies on the conic $x^2 + axy - y^2 = 0$. This conic is in fact a pair of straight lines since it amounts to $(x + \frac{a}{2}y)^2 = (1 + \frac{a^2}{4})y^2$.

We also have
\[
[u_{2n+1} \ u_{2n}] = A^n A^{n-1}[u_2 \ u_1] = A^n[u_{n+1} \ u_n].
\]
When $c_2c_0 - c_1^2 \neq 0$, the matrix $[u_2 \ u_1]$ has inverse matrix, say V, and we get
\[
\begin{bmatrix}
 x_{2n+1} & x_{2n} \\
 x_{2n} & x_{2n-1}
\end{bmatrix} = A \begin{bmatrix}
 x_{n+1} & x_n \\
 x_n & x_{n-1}
\end{bmatrix} V \begin{bmatrix}
 x_{n+1} & x_n \\
 x_n & x_{n-1}
\end{bmatrix}.
\] (#)
This gives x_{2n+1} and x_{2n} as quadratic forms in the variables x_{n+1}, x_n, x_{n-1}.

What happens in the degenerate case when $c_2c_0 = c_1^2$?

Finally we drop the requirement that $b = 1$. Then we get $\det A = -b$ and so
\[
x_{n+1}x_{n-1} - x_n^2 = (-b)^{n-1}(c_2c_0 - c_1^2).
\]
We again get the equation (#), but now the formulas are a little more complicated since we have the additional parameter b.

We can generalize all this for higher order recurrences, but the formulas are much more complicated, especially the determinantal ones. The matrix A which appears is essentially the rational canonical form that appears in advanced linear algebra.