TRANSPORT, MIXING AND FLUIDS
anna mazzucato
penn state university
$48^{\text {th }}$ Annual Spring Lecture Series

Department of Mathematics
UNIVERSITY OF ARKANSAS
Fayetteville, AK, May 5-7,2023

Partially supported by the National Science Foundation

In memory of Charles Doering (1956-2021) friend and mentor

(Photo courtesy of Center for Complex Systems, University of Michigan)
O. INTRODUCTION

Study how well a passive scalar trader (c.g. dye in water) car be mixed by incompressible flows.

Important problem:
(1) Analytically, related to irregular teamsport, anomalous and enhanced dissipation (\Rightarrow turbulena)
(2) In applications, eeg. pollutant contamination, coz dispersal, efficient combustion, extrusion in manifacturing.
Two main mechanisms for mixing (Danckwerts, Eckart, We lander ' $\overline{0} O_{s}$)

- filamentation due to transport by volume-pusezving flows (stirring) \Rightarrow growth of derivatives of tracer.
- diffusion.

We will primarily concentrate on effect of stirring and neglect diffusion, sources and sinks.

MIXING IN THE OCEAN AND ATMOSPHERE

Global CO2 concentration in 2013 (record year)
active mixing and churning of ocean waters
(courtesy of NASA Visible Earth)

RELATED WORKS

Large literature on mixing:

- turbulence (Boffetta et Al., Gotoh-Watanabe)
- ergoolic theory (Aref, Liverani, Ottino, Dolgopyat...)
- homogenization, singular perturbation (otto,...)
- optimal control (coulfied, Hu-Wu)

In imcompussible fluid mechanics, connection with:

- Relaxation (dissipation) enhancing flows (constantine et Al.,..)
- Inviscid clamping and stability of Euler flows (Beolzossian Masmoudi, Bedzossian-Cot,Zelat,....)

Our approach is barrel on tools from PDEs and geometry (classical geometry and geometric analysis).
I. IRREGULAR TRANSPORT

Passive scalar assumed to solve a linear transport equation:

$$
\begin{equation*}
\partial_{t} \theta+u \cdot \nabla \theta=0 \quad, \quad \theta(0)=\theta_{0} \tag{T}
\end{equation*}
$$

where $\theta: \Omega \times[0, T] \rightarrow \mathbb{R}, \mu: \varepsilon \times[0, T] \rightarrow \mathbb{R}^{d}, \Omega=\mathbb{R}^{d}$ or $\Omega=\pi^{d}, d \geqslant 2$, u given, div $\mu=0$.
Assume u has limited (soboles) regularity. Even when u is regular, dependence of θ on the flow of μ is nonlinear.

Because u is divergence free, (T) is (formally) equivalent to a continuity equation:

$$
\begin{equation*}
\partial_{t} \theta+\operatorname{div}(\mu \theta)=0, \quad \theta(0)=\theta_{0} \tag{c}
\end{equation*}
$$

For most lectures $\Omega=\pi^{2}$. Refer to u as the advecting velocity.
Lipschitz-continuous velocity
when $\mu \in L^{\infty}\left([0, T]\right.$, Lip $\left.\left(T^{2}\right)\right)$, the classical cauchyLipschitz theory applies \Rightarrow solve (T) by the Method ofcharacterstico.
(a). Any weak solution θ of (T) with $\theta_{0} \in L^{p}\left(\pi^{2}\right), 1 \leqslant p \leqslant \infty$, is a Lagrangian solution:

$$
\theta(x, t)=\theta_{0}\left(\Phi^{-1}(x, t)\right)
$$

with Φ the flow of u :

$$
\left\{\begin{array}{l}
\frac{d}{d t} \Phi(x, t)=u(t, \Phi(x, t)) \\
\Phi(x, 0)=x
\end{array}\right.
$$

\$-1 referred to as the back-to-habels map.
(b) the flow of μ, Φ, is also Lipschitz in space, and the norm bound holds:

$$
\left\|\nabla_{x} \Phi(\cdot, t)\right\|_{L^{\infty}}\left(\pi^{2}\right) \leqslant e^{L t}
$$

where L is the Lipschitz constant of μ.
(c) Weak solutions of (T) are unique and θ is Lipschitz continuous if θ_{0} is.

Sobolev velocities
we now assume $\mu \in L^{\infty}\left([0, T] ; w^{1, p}\left(T^{2}\right)\right), 1 \leqslant p<\infty$.
Notation: We elenote the L-bared sobolev spaces, as usual

$$
w^{k}, p\left(\mathbb{\pi}^{2}\right)=\left\{f \in L^{P}\left(\mathbb{\pi}^{2}\right) / \nabla^{k} f \in L^{P}\left(\pi^{2}\right)\right\}, 1 \leqslant p \leqslant \infty \text {. }
$$

the Lipschitz space Lip $=w^{1, \infty}$.
If $\theta_{0} \in L^{P}\left(\mathbb{T}^{2}\right)$, weak solutions still exist (provided $u \in L^{q}, \frac{1}{p}+\frac{1}{q}=1$) but they may not be unique,

Note that if $p \geq 2, \mu \in W^{\prime} \mid p \Rightarrow u \in L 9, \forall q<\infty$, by soboles embedding.
Uniqueness can be ustored for venormalized solutions (Diperna-Lions ' 80 s) \Rightarrow informally, θ is a renormalized solution if $\beta(\theta)$ is a urak solution of (T) for all functions $\beta \in \tau \frac{1}{b}(\mathbb{R}), \beta(0)=0$.

Remark: if $\mu \notin L^{9} \cdot\left(\pi^{2}\right)$, then non uniqueness for Lagrangian solutions with sobolev velocities was ucently obtained by convex integration (S2e'kélyhidi-Modena'1.9, (heskyolor-mo 120).

Properties of renormalized solutions:
(1) weak solutions obtained by mollification and by vanishing viscosity (add $\varepsilon \Delta \theta$ and send $\varepsilon \rightarrow 0$) are unormalized if $\theta_{0} \in L^{p}$, $p \geqslant 1$ (DiPerna-Lions'80s, Leßus-Lions 'O4, Cuppa-Spirto'15)
(2) If θ is unormalized, the L^{P} norm of θ is conserved by the flow:

$$
\| \theta\left(t, 0\left\|_{L p}=\right\| \theta_{0}(0) \|_{L p} \quad \forall t \in[0, T]\right.
$$

if μ is elivergence f zee.
(3) The theory of zenormalized solutions, in particular uniqueness, can be extended to velocity fields $\mu \in L^{1}\left([0, T] ; B V\left(\pi^{2}\right)\right.$ with θ_{0} bounoled, where $B V$ is the space of functions with Bounded variation (weak closure of $W^{\prime} 1$) $\Rightarrow \nabla u$ is a measure (Ambzosior 'gus).

The suet in (3) is sharp (a counterexample discussed later).
II. MIXING NORMS AND RATES

Informally, scalar θ is perfectly mixed if $\theta=\bar{\theta}$, where $\bar{\theta}$ is the average of $\theta: \bar{\theta}(t):=f_{\pi^{2}} \theta(x, t) d x$.

Assumption: throughout assume $\theta_{0} \in L^{\infty}\left(\mathbb{T}^{2}\right), \bar{\theta}=0$. Because we work with weak solutions, $\bar{\theta}(t)=0 \forall t$ if $\bar{\theta}_{0}=0$.

Definition: $\theta(t)$ is perfectly mixed if $\theta(t) \rightarrow 0$ Tax weakly in $L^{2}\left(\mathbb{T}^{2}\right)$. Tmix $\leqslant \infty$ is called the mixing Time.

Note that θ cannot converge to zero strongly, as the L^{2} norm of θ is conserved.

Ergoolic mixing (strong): the flow of u is mixing if, for any two Botel measurable sets A, B with positive measure

$$
m\left(\phi_{t_{n}}^{*}(A) \cap B\right) \xrightarrow[n \rightarrow \infty]{ } \quad m(A) m(B) \quad \text { (EM) }
$$

(m Lebesgue measure, Φ_{t}^{*} push-foeward).

Condition (EM) Says that θ_{0} and $\theta(t)$, when $\theta_{0}=\chi_{A}$, decorrelate as $n \rightarrow \infty$. Using that simple functions are den x if ϕ is mixing in the cegoolic sense, then any $\theta_{0} \in L^{C}\left(\pi^{2}\right)$ is perfectly mixed at the mixing time.

Two funolamental questions arise:
(1) Given the regularity of μ, what is the optimal mixing rate?
(2) Given the regularity of u, is the mixing time Tmix finite or infinite?

To answer (1) and (2), introoluce quantitative measures of mixing.
Negative Sobolev homs: for conveniena, use L^{2}-based noes \Rightarrow defined using Fourier series. Let f be a dist uibutions on π^{2} and let $\left\langle f, e_{k}\right\rangle=: \hat{f}_{k}, k \in \mathbb{Z}^{2}, e_{k}(x)=e^{-i k \cdot x}$, be the k-th Fourier coefficient of f. For $s \in \mathbb{R}$, define the s-norm:

$$
\|f\|_{s}=\|f\|_{H s}:=\left(\sum_{k \in \mathbb{Z}^{2}, k \neq 0}|k|^{2 s}\left|\hat{f}_{k}\right|^{2}\right)^{1 / 2}
$$

Mix -norms

Using uscaling, one can sec that the s-noem amplifies large scales and penalizes small scales if $s<0$.

Mixing arises from the creation of small (space) scales by the flow \Rightarrow negative soboler norms of $\theta(t)$ will decay in time.

Lemma (Doeuing-Thiffeanet ' $\|$): $\left\{\theta_{n}\right\} \subset L^{2}\left(\pi^{2}\right), \bar{\theta}_{n}=0$.

$$
\theta_{n} \xrightarrow[n \rightarrow \infty]{\rightarrow 0} \quad \Longrightarrow \quad\left\|\theta_{n}\right\|_{s} \xrightarrow[n \rightarrow \infty]{ } \quad 1 \quad s<0 .
$$

We can use any negative soboler norm to quantify mixing. Refer to negative soboles norms as mix-noems.

In 2D, normalizing $\left\|\theta_{0}\right\|_{L^{2}}=1$, the -1 norm has the dimension of a length scale.

Definition: $\varepsilon_{f}(\theta)(t):=\|\theta(t)\|_{-1}$ is the functional mixing
scale for scalar θ at time t.

Other mix-norms used in literature ($s=\frac{-1}{2}$, Mathews-Mézic-Petzold). Related geometric concept, the characteristic length scale of tracer at t. ε-mixing and rearrangement cost
Definition: A measurable set A with $m(A)=\frac{1}{2} m\left(\pi^{2}\right)$, is K-mixed to scale ε, when $0<k<1 / 2, \varepsilon>0$, if for any $x \in \pi^{2}$:

$$
\begin{equation*}
m(D(x, \varepsilon)) \leqslant m(D(x, \varepsilon) \cap A) \leqslant(1-k) m(D(x, \varepsilon)) \tag{*}
\end{equation*}
$$

where $D(x, \varepsilon)$ is the disk centered at x with radius \mathcal{E}.
Apply this notion to the level sets of θ_{0}. Assume for simplicity θ_{0} is a binary function $\theta_{0}=\left\{\begin{array}{rl}1 & o_{n} A_{0} \\ -1 & \text { on } A_{0}^{c}\end{array}, \quad m\left(A_{0}\right)=1 / 2 m\left(\pi^{2}\right)\right.$.
$\operatorname{set} A_{t}:=\phi_{t}^{*}(A)$.

Definition: $\quad \mathcal{E}_{g}(t):=\operatorname{Inf}\left\{\varepsilon>0 /(*)\right.$ holds for $\left.A=A_{t}\right\}$ is the geometric mixing scale at time t.

Fact: ε_{g} and εf are not equivalent (Lin-Lunasin-Novikos-M.-DDezing'12). But if flow of μ Φ is mixing, the εf and εg decay at similar rates (up to constants.) $\Rightarrow \quad \varepsilon_{f}=\varepsilon_{g}=0$ at $t=T_{\text {mix }}$

Conjecture (cost of rearranging set, A. Bressan): Let Φ be the flow at time 1 of a (sufficiently regular) vector field u. If $\Phi(A)$ is mixed to scale ε, then $\exists G=G(A, k)$ such that

$$
\begin{equation*}
\left.\int_{0}^{t} \int_{\pi^{2}}\left|\nabla_{\mu}(x, \tau)\right| d x d \tau\right\rangle \quad G|\log \varepsilon| \tag{BC}
\end{equation*}
$$

Conjecture is still open. Proved if ∇u uplaced by $|\nabla u| p, p>1$. (Cuppa. De Lellis,'08).

Proof uses the following quantitative estimates for so-called regular Lagrangian flows:

$$
\begin{equation*}
\int_{D(x, r) \cap G_{\lambda}} \frac{\log (l \Phi(x, t)-\Phi(y, t) l+1) d y \leqslant G \lambda \int_{\pi^{2}} \mid \nabla u(x, t) l^{p} d x}{r} \tag{L}
\end{equation*}
$$

where $G_{\lambda}:=\{|\Phi(x, t)| \leqslant \lambda, * \in \in[0, T]\}$.

Estimate (L) can be viewed as an integrated form of the classical Cauchy-Lipschitz estimate:

$$
\log (|\Phi(x, t)-\Phi(y, t)|+1) \leqslant C\|\nabla \mu(t)\|_{L} .
$$

Incompussible flows with Soboles regulauty are ugular Lagrangian.

Mixing Rates
If θ_{0} is mixed by μ, both $\varepsilon f, \varepsilon_{g}$ will olecay to 0 .
How fast the mixing scales decays and whether perfect mixing is achieved in finite or infinite time depend on μ and possibly θ_{0}.

Estimates (L) and (CL) implicates that ∇u is Key in conteolling the trajectories \Rightarrow we distinguish 3 cases:
(a) $u \in L^{\infty}\left([0, \infty) ; w^{s, p}\left(\pi^{2}\right)\right)$, for some $0 \leqslant s<1,1 \leqslant p \leqslant \infty$;
(b) $u \in L^{\infty}\left([0, \infty) \dot{w}^{1, p}\left(\pi^{2}\right)\right)$, for some $1 \leqslant p \leqslant \infty$;
(c) $u \in L^{\infty}\left([0, \infty)\right.$; $\left.w^{s}, p\left(\pi^{2}\right)\right)$, for some $s>1,1 \leqslant p \leqslant \infty$.

If u is the velocity of a physical fluid flow, then:
(a) includes the case of energy constrained flows (energy $\|\mu(+)\|^{2}$);
(b) includes the case of enstrophy constrained flows (ensteophy $\|\omega\|_{L^{2}}{ }^{2}=\|\nabla u\|_{L^{2}}{ }^{2}, \quad \omega=$ curl vorticity);
(c) includes the case of palinstrophy constrained flows (palinstrophy $\|\nabla \omega\|_{L^{2}}^{2}, \quad \omega=$ are u vorticity).

Optimal rates are known in all three cases now, using both deterministic and stochastic flows.

We focus the oliscussion on decay of functional scale $\|\theta(t)\|_{-1}$.

Numerical simulations support:
(a) finite - time perfect mixing;
(b) exponential infinite-time mixing;
(C) exponential infinite-time mixing.

III. OPTIMAL MIXING

Finite-time mixing
since (T) is time-reversible and $\theta \equiv 0$ is always a solution, finitetime mixing is only possible if non uniqueness of (weak) solutions holds.
\Rightarrow by the DiPerna-Lions-Ambrosio theory, impossible under ensteophy - palinstrophy constraint.

Under am energy budget $\left(\|u(t)\|_{L^{2}}^{2} \leqslant C \forall t\right)$, finite -time mixing is consistent with lower bound on the mixing scale, detained by simple energy estimates: ω ute $\theta=\Delta \phi$, potential $\phi \in H^{2} \Rightarrow$ $\|\nabla \phi\|_{L^{2}}=\|\theta\|_{+1-1} \Rightarrow$ integrating by parts:

$$
\frac{d}{d t}\|\theta(t)\|_{H^{-1}} \geqslant-\|u(t)\|_{L^{2}}\|\theta(t)\|_{L^{2}}=-\|\mu(t)\|_{L^{2}}\|\theta \Delta\|_{L^{2}}
$$

\Rightarrow linear lower bound.
Construct a simple example that achieves finite-time mixing for out initial condition.

Optimal mixer (energy budget)
Already implicitly present in work of Bressan \& DePauw.
Set $A_{0}=\frac{1}{2}$ torus, $\theta_{0}(x)=\left\{\begin{array}{cc}1 & \text { on } A 0, \\ -1 & \text { on } A_{0}{ }^{c} .\end{array}\right.$
Employ a "slice and dice" strategy: apply piecewise constants Shear flows, alternating vertical with horizontal, halving time at each step.
Ex: horizontal shear $u=\left\{\begin{array}{ll}0, & 1 / 2<x<1 \\ 1 & \left.\mu_{1}(y), 0\right)\end{array} 0<y<\frac{1}{2}\right.$.

Use scaling properties of -1 norms:

$$
f_{\lambda}(x):=f(\lambda x) \Rightarrow\left\|f_{\lambda}\right\|_{-1} \leqslant \lambda^{-1}\|f\|_{-1}
$$

\Rightarrow mixing scale decuase by a factor of $\frac{1}{2}$ at each iteration.

Perfect mixing at time $T_{\text {mix }}=\sum_{n \in \mathbb{N}^{-n}}=2$.

Self - similar mixing
Previous construction is an example of self-similar mixing $\Rightarrow \exists t_{n}, n \in \mathbb{M}$, such that $\theta\left(x_{1}, t_{n}\right)=\theta\left(N x, t_{n+1}\right), N \in \mathbb{N}$. , that is, tracer field at time t_{n} consists of exact replicas of the field patterns at time t_{n-1} at smaller scales.$\rho=+3$$\rho=-1$

Using rescaling easy to show:
(a) $\left.u \in L^{\infty}(c 0, \infty) ; w^{s, p}\right), 0 \leqslant s<1 \Rightarrow$ finite-time perfect mixing
(b) $\mu \in L^{\infty}\left([, \infty) ; W^{s}, p\right), s=1 \Rightarrow$ exponential-in-time mixing
(c) $\mu \in L^{\infty}\left([0, \infty) ; W^{s, e}\right)$, s>1 \Rightarrow polynemial-in-time mixing

For (a), (b) self-similat mixing is optimal. For (c), suboptimal.

Exponential mixing
Definition: μ mixes θ_{0} exponentially in t_{1} me if there exists constants $G, c>0$ (olepenoling on μ and possibly θ_{0}) such that

$$
\varepsilon_{f}(\theta)(t)=\|\theta(t)\|_{-1} \leqslant c e^{-c t}, \quad \forall t \geqslant 0
$$

From Bressan's conjecture, expect an exponential lower bound on $\varepsilon_{f}[\theta)$ if $\mu \in L^{1}\left([0, T] ; w^{1, p}\left(\Pi^{2}\right)\right)$ for some $p>1$.

Theorem (Iyer-Kiseles-Xu, 13): Let $\theta_{0} \in L^{\infty}\left(\pi^{2}\right), \bar{\theta}=0$, and let μ be a uvular, time-elependent flow. For any pe $(1, \infty)$, $\lambda \in(0,1), \exists r_{0}=r_{0}\left(\theta_{0}, \lambda\right), \varepsilon_{0}=\varepsilon_{0}(\lambda), c=c(p)$ such that

$$
\left.\varepsilon_{f}(\theta)(t) \geqslant \varepsilon_{0} r_{0}^{2}\left\|\theta_{0}\right\|_{L^{\infty}} \exp \left(\frac{c}{m\left(A_{a}\right)^{t / 2}} \int_{0}^{t}\|\nabla u(s)\|_{L^{p}} d s\right)\right)
$$

when $\quad A \lambda=\left\{x \in \mathbb{\pi}^{2} / \theta_{0}(x)>\lambda\left\|\theta_{0}\right\|_{L^{\infty}}\right\}$ super-level set of θ_{0}.
Note constants depenel om the size of level sets of θ_{0}, not Just the L^{∞} norm.

Remark : Inolependent proof by C. Seis ('13) using optimal transport for binary functions \Rightarrow exponential lower bound om the MangeKantorovich distance $\partial(\theta)$ (Brenier- Otto-Seis'll), plus interpdation inequality $C\|\theta\|_{T V}^{-1} \leqslant D(\theta) \leqslant \varepsilon f(\theta)$, $T V$ total variation.

Sketch of proof of theorem : (1) Relax notion of E-mixed ret to ε-semi mixed set $\Rightarrow \frac{m(A \cap B(x, \varepsilon))}{m(B(x, \varepsilon))}<1-K$ for some $0<K<Y_{2}$.
 ε-semi mixed
(3) If $\Phi_{t}\left(A_{\lambda}(\theta)\right)$ is \mathcal{E}-semi mixed, then

$$
\int_{0}^{t}\left\|\nabla_{\mu}(t)\right\|_{L} d t \geqslant \frac{m\left(A_{\lambda}\right)^{y_{p}}}{9} \log \left(\frac{2 \varepsilon}{r_{0}}\right) \quad(1<p<\infty)
$$

(4) Argue by contradiction.

Both proofs do not use energy estimates \Rightarrow geometric measure theory arguments.

Exponentially mixing flows
Many classical examples of exponentially mixing maps (e.g. cat map, baker's map). Some examples of flows in dimension d>2 On non-flat manifolds.

Here, we insist on flows with velocity of prescribed regularity.
Present geometric construction (Alberti-Crippa-M. '14, '19) that yields exponentially mixing flows with velocity $u \dot{\epsilon} w^{\prime \prime p}, 1 \leqslant p \leqslant \infty$, for certain binary initial data.

This construction has applications to other problems: loss of regularity, anomalous dissipation.

As example of exponential mixers superseded by recent developments:
(1) the flow generated by a time periodic, lipschitz flow, alternating between independent piecewise linear shear flows is a (universal) exponential mixer (Elgindi-Liss-Mattingly'23, Myers Hill-Sturman-wilson '21).
(2) Proof of (1) relies on a perturbation argument and the fact that the time 1 image of alternating piecewise linear shear flows is a piecewise toral automorphism (under certain conditions) lake the cat map.
(3) the theory of ranolom dynamical systems allows to construct exponentially mixing flows that are regular in space, but rough in time:
(a) Solutions of the 2D Navier-stokes equations with stochastic forcing (white in time, colored in space). (Bedrossian-Blumenthal - Punshon Smith, '21)
(b) Pierrehumbert flow: alternating sine shear flows with random phase (Blumenthal-Cot,zelat1-Gualani(22). Cam also take fixed shears, but random tmtervals of time whore they act (Cospermán'22).
(4) All the examples in (1), (2), (3) are universal mixers (mix all initial conolitions in a olense subset).

Self-similar and Quasi-self-similar exponential mixers
Describe a geometric approach to constructing flows that mix optimally binary functions (this last condition can be relaxed somewhat).
$\theta 0$ will be of the form $\quad \theta(x)=\left\{\begin{array}{cc}-1, & x \in A^{c} \\ 1, & x \in A, \text { with } m(A)=\frac{1}{2} m\left(\mathbb{T}^{2}\right) \text {. }\end{array}\right.$.
Prescribe the evolution of the set A. Show there exists a velo city field u that ualizes the given evolution.

Present two examples
(i) Sobolev example: velocity $\mu \in L^{\infty}\left([0, \infty) ; W^{\prime}, P\left(T^{2}\right)\right), \forall 1 \leq p<\infty$. the evolution of set A contains a topological change (pinching Singularity) and it is self-similar.
(ii) Lipscfitz example: velocity $\left.\mu \in L^{\infty}(\tau 0, \infty) ; w^{1, \infty}\left(\pi^{2}\right)\right)$, the evolution of the set cannot have any topological change and it is quasi self-similar \Rightarrow follows the steps in the construction of the Plano were (a space filling curve).

Related constructions: (1) Different analytic construction of exponential mixers foe functions that au not (clos tor) binary, $\mu \operatorname{sing}$ cellular flows as builoling blocks, $\mu \in L^{\infty}\left([0, \infty) ; w^{\prime}, p\right) \|$ $p \approx 2$ (Yas-Zlatos 117).
(2) The construction in (1) was later generalized to an almost universal mixer, using the fact baher'smap, is the time 1 image of two shear flows,$\left.\mu \in \operatorname{Les}^{\infty}(50, \infty) ; w s, p\right), s \approx 1$, $p \approx 2$.
time-dependent paths and wheres
View time as a parameter along families of curves in π^{2}.
Notation: (1) paths: $\gamma: J \rightarrow \mathbb{T}^{2}\left(\right.$ or $\left.\mathbb{R}^{2}\right)$, J interval in \mathbb{R}. olenote $\gamma(\gamma)$ a were. γ assumed at least of class el, ideally of class $c^{s}, s \geqslant 0$.
(2) time-olependent paths: $\gamma: J x I \rightarrow \mathbb{u}^{2}\left(\Delta r \mathbb{R}^{2}\right)$, with I,f intervals in \mathbb{R}.
$s, t \rightarrow \gamma(s, t)$
Denote : $\frac{\partial \gamma}{\partial g}=\dot{\gamma}, \quad \frac{\partial \gamma}{\partial t}=\gamma_{t}$ or $\partial_{t} \gamma$.
(3) Adapted frame: $(\tau(s), \eta(s))$ for path $(\tau(s, t), \eta(s, t))$ for time olepenolent paths, where τ is the tangent vector, η is the normal vector. With abuse of notation, wite $\tau(s)$ for $\tau(\gamma(s))$, $t(\delta, t)$ for $\tau(\gamma(s, t))$ and similarly for η. Orient all curves positively and choose $\eta(s)=-\tau(s)^{\perp}=-\frac{\dot{\gamma}(s)}{(\dot{j}(s) \mid}$ the normal velocity v_{n} for a time-olependent path $\gamma(s, t)$ given by:

$$
v_{n}=\partial_{t} \gamma \cdot \eta
$$

(4) time-depenolent demains: $\begin{aligned} & E: I \longrightarrow \mathbb{T}^{2}\left(\mathbb{R}^{2}\right), E(t) \text { class } e^{k}, k \geqslant 1 . \\ & t \longmapsto E(t)\end{aligned}$ Define normal velocity v_{n} as outer velocity of $\partial E(t)$.
(5) Compatible vector fields: u compatible with E if $\mu, \eta=v_{n}$.

If μ is regular and compatible and Φ is the flow of μ :

$$
\Gamma(t)=\Phi\left(t_{1} \Gamma\left(t_{0}\right)\right) \quad E(t)=\Phi\left(t, E\left(t_{0}\right)\right), \quad t, t_{0} \in I
$$

where $I(t)$ is any connected component of $\partial E(t)$ (a jordan are e) $\Rightarrow \theta(x, t)=\chi_{E(t)}(x)$ is a distributional solution of (T) with advecting velocity μ and initial data $\theta_{0}=x_{E(0)}$.
the construction of the exponential mixers based on the following lemma.

Smooth Evolution Lemma: Let E be a smooth time-dependent domain such that the measure of each connectcol components of $E(t)$ is conserved. then there exists a smooth, divergence free vector field μ that is compatible with E.

Sketch of proof: μs stream function ψ of $\mu, \mu=\nabla^{\perp} \psi \Rightarrow$ we can localize μ by cutting off ψ, maintaining the divergencefree condition.
So it is enough to define 4 in a tubular neighborhood of $\partial E(t)$. Foliate this neighborhood with smooth curves $\Gamma \alpha[s, t), 0 \leq \alpha \leq 1$. On each $\Gamma \alpha$, define $\psi(s, t)=\psi(x(s, t))$ as solution of the family of ODES ins:

$$
\partial_{\tau} \psi(s, t)=v_{n}(s, t)
$$

where $\tau(s, \tau)$ is the tangent vector to Γ_{α}.
$\mathcal{\psi}$ is well defined as a function of $x \in \mathbb{T}^{2}$ if ψ periodic ins, which follows from following Lemma.

Lemma: Let I be a e^{k} (closed) curve and v a e^{k} function Such that $\int_{\Gamma} v d \sigma=0$. Given $\bar{r}>0$, there exists μ, autonomous, such That:
a) $u \cdot \eta=v$;
b) $\operatorname{supp} \mu \subset\{x / \operatorname{dist}(x, \Gamma)<\bar{r}\}$.

Proof of Lemma : let $\gamma: I \rightarrow \mathbb{R}^{2}$ be a parametrization of E. choose: i) $\gamma\left(\right.$ sol $\left.=x_{0} \in \mathbb{R} ; i i\right) \quad g: \mathbb{R} \rightarrow \mathbb{R} \leq \operatorname{sooth}, g(0)=1$, Supp $g C\left[-\frac{1}{2}, \frac{1}{2}\right]$; iii $) \quad r$ with $0<r<\bar{r}$.
set $B(\Gamma, r):=\{x /$ olist $(x, I)<r\} \Rightarrow \exists e^{k}$ oliffeomocphism $\bar{\Psi}: I \times[-r, r) \rightarrow B(I, r)$. with $x=\Psi(s, y) \in B(I, r)$, olefine

$$
\begin{array}{r}
\psi(x)=\psi(s, y):=g\left(\frac{y}{r}\right) \int_{S_{0}}^{s} v\left(\gamma\left(s^{\prime}\right)\right) \dot{\gamma}\left(s^{\prime}\right) d s^{\prime} \\
\Rightarrow \partial_{\tau} \psi=v, \psi \in \varepsilon^{k-1} \text {, supp } \psi \subset B\left(\Gamma, \frac{r}{2}\right) \subset B(\Gamma, r] .
\end{array}
$$

then, extend ψ by zees to $B(P, r)$ and let $\mu=\nabla^{\perp} \psi$.
Remarks: (1) Lemma extends to time-dependent curves if s is compatible, so that μ is compatible.
(2) By the olivergence theorem, conolition $\int_{I} v d \sigma=0$ is necessary to have u divergence free.
(3) Choosing $v=v_{n}$ give existed of μ compatible with I.

Homothetic curves: $\Gamma(t)=\lambda(t) \bar{\Gamma}=\{\lambda(t) x \mid x \in \bar{\Gamma}\} w_{i}+h$ $\lambda: I \rightarrow(0,+\infty), \bar{\Gamma}$ given support curve. set $\bar{v}=x \cdot \bar{\eta}, \bar{\eta}$ normal to \bar{r}. Then: $\quad \eta(x, t)=\eta\left[\frac{x}{\lambda(t)}\right], v_{n}[x, t)=\lambda^{\prime}(t) \bar{v}\left(\frac{x}{\lambda(t)}\right)$. Also, if $\bar{\mu}$ is compatible with $\bar{\Gamma}(\bar{\mu} \cdot \bar{\eta}=\bar{v}, 0$ n $\boldsymbol{I})$, $\mu(x, t)=\lambda^{\prime}(t) \bar{\mu}\left(\frac{\lambda}{\lambda(t)}\right)$ compatibill with Γ.
$1^{\text {st }}$ example: Pinching Singularity
the mixing will be self similar. Only need to construct the first step. the iteration done by rescaling. construct:
(a) $\mu^{0} \in L^{a}\left(\tau 0, T 1 ; w^{1} p\left(\pi^{2}\right), 1 \leqslant p<\infty \quad T \geqslant 0\right.$ (imf fact, $\mu^{p} \in \operatorname{Los}\left([0, T], w^{s}, p\right) \quad s<1,1 \leqslant p \leqslant \infty$ o? $s \geq 1,1 \leqslant p \leqslant \frac{2}{s-1}$ $\left.\Rightarrow u_{0}(t) \notin \operatorname{Lip}\left(\pi^{2}\right)\right)$.
(b) $\left.\theta^{0} C t\right)=X_{E(t)}-\frac{\pi}{16}$, where E is a time-olependent set

Such that $m(E(t))=\frac{\pi}{16}, E(0)=D\left(0, \frac{1}{4}\right)$ disk, $E(1)$ is given by 4 copies of initial disk at scale $1 / 2$.

μ^{0}, θ° smooth except at $t=\frac{k}{8}, k=1, \ldots, t$. θ^{0} continuous and transported by μ° on intervals $\left(\frac{k}{8}, \frac{k+1}{8}\right)$. $\Rightarrow \theta^{\circ}$ weak solution of $\partial_{t} \theta^{0}+\mu^{0} \cdot \nabla \theta^{\circ}=0$.

Step 1: construction of $E(t), \mu^{0}(t), 0 \leqslant t \leqslant \frac{1}{8}$.

- Define $E\left(\frac{1}{8}\right)$ by reflecting across vertical midline (dotted) Since $E(D)$, $E\left(\frac{1}{8}\right)$ Smooth, simply connlcteol, same ara,

There exists a smooth map deforming $E(0)$ into $E\left(\frac{1}{8}\right)$, preserving area $\Rightarrow u^{\circ}(t)$ exists on $[0,1 / 8]$ by smooth Evolution Lemma, with support in a squau $Q \subset \pi^{2}$.

Step 2 : construction of $E(t), \mu^{\circ}(t), \frac{1}{8}<t<\frac{1}{4}$.

- Let $\bar{\Gamma}$ be one of the two mirror-symmetric components of $\partial E\left[\frac{1}{8}\right) \cap R$, as in the figure. $I_{n} B \backslash R, \bar{\Gamma}=\left\{\left|x_{1}\right|=x_{2}\right\}$ and otherwise $\bar{\Gamma}$ smooth.
- Define hamothety of $\bar{\Gamma}$ with factor $\lambda(t):\left[\frac{1}{8}, \frac{1}{4}\right) \rightarrow(0,1]$ decreasing $\lambda\left(\frac{1}{8}\right)=1, \quad \lambda \rightarrow 0$.
- Enough to construct $\partial E(t)$ (Jozolan curve) so that:
(a) $E(t)=E\left(\frac{1}{8}\right)$ om $Q(B$ i
(b) $\partial E(t) \cap B$ has two mirror-symmetric components, each agreeing (up to rigid motions) with $\lambda(t) \bar{\Gamma}$ in B
- By smooth Evolution Lemma, $\exists \mu^{\circ}$ in a neighborhood of $l(t) \bar{\Gamma}$ foe $t \in\left(\frac{1}{8}, 1 / 4\right)$. Extend it by uflection in R, and by zero to Q, since $E(t)=E\left(\frac{1}{8}\right)$ on R^{C}.
- u^{e} is of the form $\mu^{0}(x, t)=\lambda^{\prime}(t) \bar{\mu}\left(\frac{x}{\lambda(t)}\right) \Rightarrow$ choox $\lambda(t)$ so that μ° has needed soboles regularity $\quad\left(\lambda(t)=e^{\left.2-\frac{1}{1-4 t}\right)}\right.$.

Step 3 : Constr zurtion of $E(t), \mu^{0}(t)$ on $\frac{1}{4} \leqslant t \leqslant \frac{3}{8}$.

- Proceed similarly to step 2 with $E\left(\frac{1}{4}\right), E\left(\frac{3}{8}\right)$ as given in the figure, using homsthety.

Step 4: Construction of $E(t), \mu^{0}(t)$ on $\frac{3}{8} \leqslant t \leqslant 1 / 2$

- Proceed similarly to step 2 with $E\left(\frac{3}{8}\right), E\left[\frac{1}{2}\right]$ as given in the figure.
- the two olisk are exact
 copies of $D\left(0, \frac{1}{4}\right)$ with zaolius $\frac{1}{8}$.

Step 5 : construction of $E(t), \mu^{0}(t)$ on $\frac{1}{2} \leqslant t \leqslant 1$

- Repeat steps 1-4 on each of the two olisks to create 4 identical disks of radius $\frac{1}{16}$.
iteration and construction of u, θ
- Define $\mu^{n}(x, t)=2^{-n} u^{0}\left(t-n, \frac{x}{2^{n}}\right), \theta^{n}(x, t)=\theta^{0}\left(t-n, \frac{x}{2^{n}}\right), u \in \mathbb{N}$
- Let $\mu(x, t)=\mu^{n}(x, t), \theta(x, t)=\theta n(x, t)$ on $[n, n+1) x \pi^{2}$
$\Rightarrow \theta$ weak solution of (T) with velocity μ on $(0,+\infty) \times \pi^{2}$ with $\quad \theta(\theta)=\theta^{\circ}(\theta)$.
- By scaling (note we do not rescale the domain):

$$
\|\theta(n)\|_{H^{-1}}=\left\|\theta^{n}(n)\right\|_{H^{-1}}=2^{-n}\left\|\theta^{0}(0)\right\|_{H^{-1}} \underset{n \rightarrow 0}{ }
$$

Remarks: (1) this example show pathologies That regular Lagrangian flows, arbitzauly clos to Lipschitz, can have:
(a) Flow can compuss a segment to a point (expand a point to a segment) in finite time.
(b) Trajectoues of u starting at any point of this segment are non unique. .
(2) Construction is localized near $\partial E(t)$, i_{m} the cube $Q \subset \pi^{2} \Rightarrow$ it cam be adapted to the case of \mathbb{R}^{2} (with μ, θ still compactly supported) oe a bounded domain with compatible boundary conditions.
$2^{\text {no }}$ Example: Peans Snake
Construction fellows similar ioleas as for the pinching singularity \Rightarrow give the time evolution of a set $E(t)$ and μ re the smooth h Evolution Lemma to construct ers.

Here: - Construction is quasi self-similar: E(1) is not an exact uplica of $E(0)$ at smaller scale. It is a suitable combination of unscaled copies from a finite family of initial patterns.

- The initial conolition is a strip centered around the median segment in \mathbb{C}^{2}.
- the time cuslution follows the iterative construction of the Plano curve, a space filling curve.
- Although u can be made smooth (derivative jumps because x of periodicity) control only Lipschitz mem uniformly in time.

Evolution of the set $E(t)$ in Example 2:
jump can be a
smooth
transition

Family of basic moves for time stepping:

Set $E(t)$ constructed using homothety.
time evolution of support curve of $E(t)$:

$\nabla \mu$ could be oliscontimuons only at entuglexit points.
IV. LOSS OF REGULARITY IN LINEAR TRANSPORT EQUATIONS

Optimal mixers esefulto investigate the ill-posednessness of linear teamopoet equations with rough (but not too rough) velocities.

- we have already shown with Example 1 pointwise oliscontinuity of the flow map
- Investigate discontinuity in sobolev spaces. \Rightarrow byproduct of Boss of regularity for solutions of (T).

Remark - Non uniqueness of weak solutions
Recace the "slide-and-dice" example of finite-time perfect mixing. By linearity ($\theta=0$ always solution) and time reversibility, finite-time perfect mixing \Rightarrow nonuniqueness for solutions to (T)

In the slice-and-dice example, $\mu(t) \in B v\left(\pi^{2}\right) \mu_{p}$ to $t=T_{m i x}$, and the total variation of μ is proportional to the length of the interfaces being crated in the tracer fiche.
$\Rightarrow\|\mu(t)\| T V$ doubles $0 m$ each successive intervals of time of length 2^{-n}.

Since $T_{\operatorname{mix}}=\sum \frac{1}{2 n},\|u(t)\| T_{T} \approx \frac{1}{T_{\text {mix }} t}, \quad 0<t<T_{\text {mix }}$ $\left.\Rightarrow \mu \in L^{1, \infty}\left(\tau 0, \tau_{m i x}\right) ; B V\right)$

By Ambrosio's suet $\left(\mu \in L^{\prime}((O, T) ; B V) \Rightarrow\right.$ uniqueness), the slide-and-dice example is optimal.

Loss of zegulauty
Since mixing by stizzing alone is obtained by cutting small scales in the tracer field (= large elerivatives), one expects a connection with growth of soboles norms \Rightarrow encooled in the interpolation inequality:

$$
\|\theta(t)\|_{L^{2}}^{2} \leqslant\|\theta(t)\|_{H^{S}}\|\theta(t)\|_{H-S} \quad \forall S \geqslant 0
$$

$\|\theta(t)\|_{H^{-S}} \rightarrow 0 \Rightarrow\|\theta(t)\|_{H_{S} \rightarrow \infty}$, since $\|\theta(t)\|_{L^{2}}$ constant.

Moolifying the "Plano Snake" example gives the following usult.
Theorem (Cuippa-Albert, M.'19): Let d $\geqslant 2$. there exist
Oo $\in e_{c}^{c}\left(\mathbb{R}^{d}\right)$ and $\mu \in L^{\infty}\left([0, \infty) \times \mathbb{R}^{d}\right)$ such that:
(i) $\left.u \in L^{\infty}(\tau 0, \infty) ; W^{1} \mid p\left(\mathbb{R}^{d}\right)\right), \forall 1 \leqslant p<\infty ;$
(ii) if θ is the $\mu_{n i q u e ~ w e a k ~ a n d ~ L a g r a n g i a n ~ s o l u t i o n ~ o f ~(T) ~}^{\text {(}}$ (with velocity μ and $\theta(0)=\theta_{0}$, then $\theta \in L^{\infty}([0,+\infty) \times \mathbb{R} d)$
$i i i) \quad\|\theta(t)\|_{H^{S}(\mathbb{R} d)}=\infty \quad \forall t>0, \forall s>0$.
In addition, μ and θ are supported on a cube in \mathbb{R}^{α} and smooth outside a point $x 0 \in \mathbb{R} d$ in space.

Remarks: (1) the theorem provioles an example of total, instantaneous loss of soboles ugularity (inclualing fractional) for weak solution to linear Tzansport equations, and list example of its Kind.
(2) θ is the unique unormalized (hence Lagrangian) solution \Rightarrow theoum implies oliscontinuity of the flow map in $W^{\prime \prime \prime}, 1 \leqslant p<\infty$.

Independently, Jabin ('15) showed eliuctly eliscontinuity of the flow map in wii by using a random flow. (see also DeNi\#1-Bianchini '20).
(3) By contrast, if μ is Lipschitz, then the flow map is a o Lipschite (though Lipschitz constant can grow exponentially in time) and regularity of θ up to Lipschitz is propagated.
(4) Some regularity of θ does get propagated by μ with wii ugularity \Rightarrow essentially only the logarithm of olerivatives $(\approx$ Fourier multiplier $\log (51$, Leger' 18) is propagated and our example implies that this usult is sharp (Brue'-Mguyen'19).
(5) Loss of ugulaity is in fact a generic phenomenon, in the sense of Baire's category theorem (Ghisi-yobbino' 20 , Bianchini-Zizea'22)
(6) Some connections with norm inflation phenomena for PDEs, but here it is a linear phenomenon.

Main iolea of proof: use mixing to grow Soboles norms exponen tally, then scale to turn growth into instantaneous blow up.

We will need a technical lemma to treat fractional ugulauity \Rightarrow although the H^{S} norm, $\theta<S<1$, is not local, it almost olecouples for superpositions of functions with well separated supports.

To prove Lemma we use Gagliardo seminorms in $H^{S}\left(\mathbb{R}^{d}\right)$, $0<s<1$:

$$
\|f\|_{\dot{H} s}^{2} \approx \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{|f(x)-f(y)|^{2}}{|x-y|^{d+2 s}} d x d y
$$

Main reason why we use L^{2}-based sobolev norms for θ.
Lemma: Let $0<S<1, K_{i} C \subset \Omega i c \mathbb{R}^{d}, \Omega_{i}$ open, Ki compact, $\Omega_{1} \cap \Omega_{2}=\phi, \operatorname{dist}\left(K_{i}, \Omega_{i}{ }^{c}\right)=\lambda i>0, i=1 \ldots N, N \in \mathbb{N}$. If $f_{i} \in H^{S}\left(\mathbb{R}^{d}\right)$, supp $f_{1}\left(K_{i}, i=1 \ldots M\right.$, then

$$
\left\|\sum_{i=1}^{N} f_{i}\right\|_{H^{S}}^{2} \geqslant \sum_{i=1}^{N}\|f\|_{H^{S}}^{2}-\frac{C(d)}{s} \sum_{i=1}^{N} \frac{1}{\lambda_{i}^{2 s}}\left\|f_{i}\right\|_{L^{2}}^{2}
$$

Formula extends to series if RHS is positive (our case).

Remark: the construction of 2D exponential mixers can be lifted to any $d \geqslant 2$ in a straightforward fashion. given $\eta \in \tau_{C}^{\infty}(\mathbb{R o l - \alpha)}$, let:

$$
\begin{aligned}
& \bar{u}\left(x_{1} \ldots x_{d}\right)=\eta\left(x_{3}, \ldots, x_{d}\right) \mu\left(x_{1}, x_{2}\right) \\
& \bar{\theta}\left(x_{1} \ldots x_{d}()=\eta\left(x_{3}, \ldots, x_{d}\right) \theta\left(x_{1}, x_{2}\right)\right.
\end{aligned}
$$

Sketch of proof of theorem: we construct u and θ as sums $u=\sum_{n} \mu^{(n)}, \theta=\sum_{n} \theta^{(n)}$, where $\mu^{(n)}, \theta(n)$ are obtained by uscaling $\mu^{(0)}, \theta(0)$.

Step 1 : Construction of basic elements $u^{(0)}, \theta^{(0)}$
The construction of the Lipschitz exponential mixer ("Beano snake") can be moolified to make velocity and the scalar smooth. then lift them to $\mu^{(0)}, \theta^{(0)}$ in $\mathbb{R o l}^{(0)}$ supported erin the unit cube $Q_{0} \subset \mathbb{R A}^{d}, \mu^{(0)}$ divergence face.

From the construction the following norm bounds hold:
(a) $\mu^{(0)}, \theta^{(0)} \in L^{\infty}\left([0,+\infty) \times \mathbb{M}^{d}\right), f_{Q} \theta^{(0)} d x=0$;
(b) $\mu^{(0)} \in L^{\infty}\left([D,+\infty) ; w^{\prime}, P(\mathbb{R} d)\right), \forall \quad 1 \leqslant p<\infty$, and $\forall r \geqslant 0$, $\exists \quad b=b(p)>0, B_{r}=B_{r}(p, r)>0$ such that

$$
\begin{equation*}
\left\|u^{(0)}(t)\right\| \ddot{w}^{r} r_{1} p \leqslant B_{r} e^{b(r-1) t}, t>0 ; \tag{*}
\end{equation*}
$$

(c) $\forall 0 \leqslant s<2, \exists c>0, \hat{c}_{s}=\hat{c}_{s}(s)>0$ such that

$$
\left.\left\|\theta^{(0)}(t)\right\|_{H^{-s}\left(\mathbb{R}^{d}\right)} \leqslant \hat{\mathrm{G}}_{\mathrm{s}} e^{-\operatorname{cst}}, t>0 ; \quad \text { (* } *\right)
$$

the $L^{2}-H^{S}$ interpolation inequality then implies
for some constant $C=C\left[p, d, s, \theta^{(0)}(0)\right)$

Step 2: constwer of $\theta^{(n)}, \mu^{(n)}$

- Let $\{\lambda n\}$ be a sequence of position numbers,$\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty_{r}$
to be chosen later. Let $Q_{n}=3 \lambda n Q_{0}$ (up to rigiol motion). choose centers of cubes Q_{n} so that they are pairwise slisjoint $Q_{n} \cap Q_{m}=\phi$, if $n \neq m$ and such that in the sense of convergence of rets $Q_{n} \underset{n \rightarrow \infty}{ }\{90\}$, a point in $\mathbb{R} d$. want u, θ to have compact support in $\mathbb{R}^{d} \Rightarrow$
(A) $m\left(U_{n} Q_{n}\right)<\infty$ if $\sum_{n} \lambda n<+\infty$.

- Up to translations and rotations, set:
Q_{100}

$$
\begin{aligned}
& \mu^{(n)}(x, t)=\frac{\lambda_{n}}{\tau_{n}} \mu^{(0)}\left(\frac{t}{\tau_{n}}, \frac{x}{\lambda_{n}}\right) \Rightarrow \operatorname{Supp}^{\operatorname{Su}^{(n)}} \subset \operatorname{Supp} \theta^{(n)} \subset Q_{n} \\
& \theta^{(n)}(x, t)=\gamma_{n} \theta^{0}\left(\frac{t}{2_{n}}, \frac{x}{\lambda_{n}}\right)
\end{aligned}
$$

for sequences $\left\{\tau_{n}\right\},\left\{\gamma_{n}\right\}$ of positive numbers, to be chosen later.

- Meaning of parameters: $\left\{\begin{array}{l}\lambda_{n} \text { space scaling } \\ \tau_{n} \text { time scaling } \\ \gamma_{n} \text { amplituole scaling }\end{array}\right.$

Step 3: construction of μ, θ

- Let $\mu=\sum \mu^{(n)}, \theta=\sum_{n} \theta^{(n)} \Rightarrow \mu, \theta$ well olefined at least are. (Q_{n} have pairwise dijoint support.).
$\theta^{(0)}$ weak solution of (T) with velocity $\mu^{(0)} \Rightarrow \theta(n)$ week solution of (T) with velocity $\mu^{(n)} \Rightarrow \theta$ weak solution of (T) with velocity u.

Step 4 : check norm bounds

- From behavior of Lebesgue and Soboler unoler uscaling in \mathbb{R}^{d} :
(B) $\mu \in L^{\infty}\left([0,+\infty)\right.$; $\left.\dot{w}^{i}, p\right)$ if $\sum_{n} \frac{\lambda_{n}^{1-r+\frac{d}{p}}}{2^{n}} e^{-\frac{(r-1) b t}{2_{n}}}<\infty$
(B) $\mu \in L^{\infty}\left([p,+\infty) \times \mathbb{R} d\right.$) if $0 \leqslant \frac{\lambda_{n}}{\tau_{n}} \leqslant C_{1}, G^{\prime}$ inolepen. of n using estimate (*).
- Using aho Lemma on localization of H^{s} noems:
(C) $\theta_{0}=\theta(0) \in H^{\sigma}(\mathbb{R} \alpha) \forall \sigma$ if $\sum_{n} \gamma_{n} \lambda \frac{d}{n^{2}}-\sigma<+\infty$
(C) $\theta \in L^{\infty}\left([0,+\infty) \times \mathbb{R}^{d}\right)$ if $\left\{\gamma_{n}\right\}$ bouneled.
- Using also $(x * *)$
(1) $\theta(t) \notin H^{S}\left(\mathbb{R}^{d}\right), S>0, t>0$ if $\sum_{n} \gamma_{n}^{2} \lambda_{n}^{d-2 s} e^{\frac{2 s c t}{\tau_{n}}}=c \Delta$

Step 5 : choia of $\lambda n, 2 n, \gamma_{n}$

- Choox $\tau_{n}=\frac{1}{n^{3}}, \lambda_{n}=e^{-n} \Rightarrow(A)$ ((3), (B) hold $w_{i}+h \quad r=1$ for all $1 \leqslant \rho<\infty$.

- Veufy that (D) holols with these choices of parameters.

Conolition (D) becomes: $\sum_{n} e^{-2 n^{2}} e^{-(d-2 s) n} e^{2 c s t n^{2}}=+\infty$, since $\operatorname{cst}>0 \Rightarrow$ holds.

- Two natural questions arise:
(1) Does loss of ugulauty holds for all soboler spaces that oboes not embed in the Lipschitz space, i.e. for $\mu \in W r, p \subset \mathbb{R} d, L<r<\frac{d}{p}+1,1 \leqslant p<c$?
(2) Does the exists a universal construction for μ that makes (most) initial conolitions θ_{o} blow- μ ?

We canmet Take $r>1$ in the pusent construction, as scaling is unfarozable in this ugime \Rightarrow norms of μ grow for $t \rightarrow 0$.

We give partial answer to (1) and (2) without appealing to mixing flows.

Key iolea: blow-up of positive norms is a local phenomenon, growth can be achieved with simple flows that are not mixing \Rightarrow allow for explicit computation of the growth of norm in time and allow for more flexible uscaling.

Loss of regularity unvisited
theorem (Crippa-Elgindi-Iyer-M.'22): Let $\theta_{0} \in H_{l o c}^{1}\left(\mathbb{R}^{d}\right)$, dol $\geqslant 2$, non-constant. the exists a compactly supported, div. free, vector field $\mu \in L^{\infty}\left([0, \infty) ; w^{r}, p(\mathbb{R d})\right), L \leqslant p<\infty, r<\frac{d}{p}+1$. such that the unique weak solution of (T) with velocity μ anal $\theta(0)=\theta$ o satisfies:

$$
\theta(t) \notin H_{\operatorname{loc}}^{\prime}(\mathbb{R} d) \quad \forall \quad t>0
$$

Remarks : (1) we do not know how to show that the fractional norms $H^{S}, 0<s<1$, exploole, since the growth of H^{\prime} norm is an explicit energy estimate.
(2) the proof is still based on uscaling of a basic element, but the location where the rescaling occurs can no longer be arbitrary, but it is based on where the H^{1} noe of θ e is large
(3) the basic element is constructed from following observation: the H^{1} norm of a non-constant function ψ om π^{d} increases by a fixed amount umoler the action of shear flows parallel to axes at time 1.
(4) Recently, instantaneous loss of some regularity was established for the 2D Euler equations in vorticity form (Coroloba-Martinez zoroa-Ożan'ski,'22) and even foe 21 surface quasi-geosteophic (SQG) equation for fractional shissipatipn l Cordoba -Martinez zoroa, 23) by a related noemi inflation + rescaling + gluing pozecedure for some initial conditions.
2D Euler and (inviscid) SQG au both active scalar equations.
The observation in (3) follows from an explicit calculation.
Notation: Set $f_{i}(z)=A \operatorname{sim}\left(2 \pi z+(i-1) \frac{\pi}{2}\right), i=1,2, A>0$. Let e_{k} be the elements of standard basis $e_{k}=(0, \ldots, 1, \ldots 0), k=1, \ldots, d$.

Lemma: Let $\Omega_{0} \subset \pi^{d}$, $d \geqslant 2$, be a given C^{1} subelomain. For any non-constant function $\psi \in H^{\prime}\left(\pi^{d}\right), \exists$ a vector field u (which depenols on $\psi X_{\Omega_{0}}$) such that:
i) u is a shear flow $u(x)= \pm f_{i}\left(x_{j}\right) e_{j} \quad w i+h \quad i=1$ or 2
ii) If ϕ is the weak solution of $\partial_{t} \phi+U \cdot \nabla \phi=0, \phi(0)=\sim$ on Ir of, then for $T>0$:

$$
\|\nabla \phi(0, T)\|_{L^{2}\left(\Omega_{T}\right)} \geqslant\left(1+\frac{2 \pi^{2} A^{2} T^{2}}{d}\right)\|\nabla \phi\|_{L^{2}}^{2}\left(\Omega_{0}\right)
$$

where Ω_{T} image of Ω_{0} under flow of U at $t=T$.

Proof of Lemma: For $i, i^{\prime} \in\{1,2\}, j \in\{1, \ldots, d\}$, set $\mu_{i, i^{\prime}, j}(x):=(-1)^{i} f_{i^{\prime}}(x j) e_{j}$, angl et $\phi_{i, i}, j^{\prime}$ be ψ transported by $\mu_{i_{i} i_{1}^{\prime} j}: \phi_{i, i^{\prime}, j}(x, t)=\psi\left(x-(-1)^{\mu} f_{i^{\prime}}\left(x_{j}\right) e_{j^{\prime}}\right)$

Computing olcriratives and summing over i, i^{\prime}, j ：

$$
\sum_{\dot{\mu}_{1} i^{\prime}, j}\left\|\nabla \phi_{i, i}, j\right\|_{L^{2}\left(\Omega_{T, i, i}^{2}, j\right)}=\left(4 d+8 \pi^{2} A^{2} T^{2}\right)\left\|\nabla j^{2}\right\|_{L^{2}}^{2}\left(\Omega_{0}\right)
$$

Since there are 4 dol terms on the left，at least one must be $>\frac{1}{4 \alpha}$ of the right－hand side，which gives the result．

Step 1：exponential growth of H^{\prime} norm
Using Lemma，given any $\theta_{0} \in M_{l_{0}}^{1}(\mathbb{R} \alpha)$ ，construct smooth （in），compactly supported，oliv－fzel vector fielel such that the H^{1}－norm of $\theta(t)$ grows exponentially in t ．
this flow anol the weak solution it generates are initial elements of an iterative uscaling scheme．
to apply Lemma，we lift the flow with velocity U from the tows 形 al to \mathbb{R} d．

Describe lifting only for $01=2$. Iolent.fy π^{2} with $[0,8]^{2}$ and choose $\Omega_{0}=[0,1]^{2} \subset[0,8]^{2}$.

- By Lemma, a vertical oe horizontal shear grows the H^{\prime}-nom of θ_{0}. say it is a vertical shear.
- then the image of $\Omega \Delta=\left[\begin{array}{ll}0 & 1\end{array}\right]^{2}$
 unoler this shear lies in a vertical strip in $[0,8]^{2}$ (the strip S_{1}).
- Deform S_{1} into the closed "track" eq by perioolicity, keeping Ω_{0} fixed
\Rightarrow the τ^{1} norm of the resulting flow is controlled

- By Lemma norm of $\theta[T]$ grows in at least one subolomain $\Omega 0^{i}, \ddot{j}$, which up to a rotation can be iolentified with $\Omega_{8}^{\prime}=\Omega_{0}^{\prime}=\Omega_{0} \Rightarrow$ growth in soboles herm.

Proposition: Let $\theta_{0} \in H_{l x}^{\prime}(\mathbb{R o l})$, $0 l \geq 2$, anole fix $\alpha>0$. then, $\exists C_{l}^{\prime}=C_{1}^{\prime}(d, \alpha)$, inolependent of θ_{0}, anal a vector field v, ohiv-free, supported $a_{m}{\overline{\Omega_{0}}}_{a}=[-3,4]^{d}, \forall t \geqslant 0$, Such that:

$$
\sup _{t \geqslant 0}\|v(t)\| e^{1}\left(\mathbb{R}^{d}\right) \leqslant C(d, \alpha)
$$

and the weak solution. θ of (T) with velocity v, initial conolition θ_{0}, satisfies:
(a) $\|\nabla \theta(n)\|_{L^{2}\left(\Omega_{0}\right)} \geqslant e^{\alpha n}\left\|\nabla \theta_{0}\right\|_{L^{2}\left(\Omega_{0}\right)}^{2} \quad \forall n \in \mathbb{N}$, w. th $\Omega_{0}=[0,1]^{\alpha}$, and
(b) $\|\nabla \theta(t)\|_{L^{2}\left(L_{0}\right)} \geqslant e^{\alpha t-\beta} \| \nabla \psi_{0}^{\prime \prime \|} L^{2}\left(\Omega_{0}\right) \mid \quad \forall t \geqslant 0$,
for $\beta=\beta(\alpha, d)$ imdepenelent of θ_{0}.

Sketch of the proof:

- lift flow U from π^{d} to $\mathbb{R}^{d} \Rightarrow$ u suiting flow.
- composing flew with it self gives exponential growth of the H^{\prime}-norm of θ at $t=n$.
- Use that $l l v(t) l l e 1$ is uniform by in t to get lower bounol at intermioliate times $t \in(n, n+1)$ up to a Small loss.

Step 2 : Scaling enol iteration Use lifted velocity v and the associated weak solution θ. Pick a respence of cubes Q_{n}, center c_{n}, and sidelengh in

Puck \tilde{Q}_{n} such that $\tilde{Q}_{n}:=7 Q n$ are pairwise disjoint and cluster at a point $y \in T^{*}$. the puiselocation is to be chosen later on.

- Up to a rigid motion, we can repeat steps 1)-4) angl con, street v on Q_{n}. call

$$
v_{n}=v l_{Q_{n}} \Rightarrow
$$

v_{n} grows noems of θ exponeticlly.
Define $\mu=\sum_{n} \mu_{n}$ and $\theta=\sum_{n} v_{n} \Rightarrow \theta$ weak solution of (T) with velocity $\mu=\mu_{0}$, initial ondition θ_{0}

- Rescale v_{n} to achicut blow up: $\mu_{n}(x, t)=\frac{\lambda_{n}}{\tau_{n}} \mu\left(\frac{t}{v_{n}}, \frac{x}{\lambda_{s}}\right)$
- ut have Supp $\mu_{n} \subseteq Q_{n}$, $\mu s_{m o o t h}$ in x outside of a pint a o (where Q_{n} concentrate as $n \rightarrow \infty$).
- Define $\mu=\sum_{n} \mu_{n}$ and let θ be the weak solution of (T) with veleuity μ, initial elata θ_{0}.
- By construction:

$$
\begin{aligned}
& \left\|\mu_{n}(t)\right\| \dot{r_{1}} p\left(\pi^{a l}\right) \lesssim \sum_{n=1}^{\infty} \frac{\lambda_{n}^{r}}{c_{n}} 1 \quad \gamma=1-r+\frac{0}{p} \\
& \| \nabla \theta_{n}\left(t_{j} . \hbar\left\|L^{2}\left(\widetilde{Q}_{n}\right) \geqslant \sum_{n=1}^{\infty} e^{\frac{\alpha t}{\tau_{n}}} M_{n}, \quad M_{n}=\right\| \nabla \sim \psi_{L^{2}}\left(\widetilde{Q}_{n}\right)\right.
\end{aligned}
$$

(0)

Goal is to choox $c_{n}, \lambda n, z_{n}$ so that the first inequality above is c co, the x cord $=\infty$.

Step 3: Covering Lemma, choice of $\lambda n, c_{n}$ choose ubbes Q_{n} based on when a uescalepl local version of H norm of θ_{0} is large

Let $f(x)=\left|\nabla \theta_{0}(x)\right|^{2} \Rightarrow \quad f \in L^{\prime} \operatorname{soc}(\mathbb{R} a), f \neq 0$.
Define

$$
\operatorname{Ar}(x):=\frac{1}{\left|Q_{r}(x)\right|} \int_{Q_{r}(x)} f(y) d l_{y}
$$

Set. $D=\left\{x \in \operatorname{Rol} / \exists \lim _{r \rightarrow 0_{+}} A(r)=f(x)\right\}$.
© has full measure by le besguc olifferentiation theoum; and $\exists \bar{\delta}>0$ (since $f \neq 0$) such that the following subset of $\widetilde{D}, \quad D:=\{x \in \widetilde{D} / \lim \operatorname{Ar}(x) \geq \bar{\delta}\} \cap B(0, R), R>0$ has positive measure \Rightarrow
for $x \in D, \exists r_{x}>0$ such that $\int_{Q_{r}(x)} f(y) d y \geqslant \frac{\sqrt{5}}{2} r^{d}$, $\forall 0<r<r_{x}$, w here $Q_{r}(x)$ ubs with center x, sidle r.
$\Rightarrow \exists c_{n} \in D, \lambda_{n}>0$ such that $\left\{\begin{array}{l}0<\lambda_{n}<e^{-n} \\ M_{n} \geqslant c \lambda_{n} d / 2\end{array}\right.$, and
$Q_{n}=Q_{\lambda_{n}}\left(c_{n}\right)$ have property that $\tilde{Q}_{n}=Z Q_{n}$ au r pairwix olisjoint.

Finally, since D bounded, $\left\{C_{n}\right\}$ has a cluster point $\left(\widetilde{Q}_{n}\right.$ accumula te to a point) and $U_{n} \widetilde{Q}_{n}$ is bounded

Step 4: choice of τ_{n}
From estimate $(\hat{\infty}),\|\theta(t)\|_{\dot{H}_{l o c}^{\prime}}=\infty$ if
(B.1) $\sum_{n=1}^{\infty} e^{t / \tau_{n}} \lambda_{n}^{d / 2}, t>0$; while $\|\mu(t)\|_{\dot{w} r_{1} p} \leqslant C_{1}^{\prime}$, if
(B.2) $\sum_{n=1}^{\infty} \frac{\lambda_{n}^{\gamma}}{\tau_{n}} \leqslant C, t>0, \forall \gamma=1-r+\frac{d}{p}>0$.

Choose $\tau_{n}=\left(\log \frac{1}{\lambda_{n}}\right)^{-2} \Rightarrow$ can verify $(B 1)$ by a slirect calculation. For $(B .2), \exists N=N(\gamma)$ such that

$$
\begin{aligned}
& \left(\log \frac{1}{\lambda_{n}}\right)^{2} \leqslant\left(\frac{1}{\lambda_{n}}\right)^{\gamma / 2}, \forall n \geqslant N(\gamma) \Rightarrow \\
& \sum_{n=1}^{\infty} \frac{\lambda_{n} n^{\gamma}}{\tau_{n}} \leqslant \sum_{n=1}^{N(\gamma)-1}\left(\log \frac{1}{\lambda_{n}}\right)^{2} \lambda n^{\gamma}+\sum_{n=N(\gamma)}^{\infty} e^{-\gamma n / 2}<\infty
\end{aligned}
$$

Open paoblems
(1) can we moolify constwation to show loss of H^{s} noam $0<s<1$? Intcepolation requius a lower bound on tis \Rightarrow mixing.
(2) Can we constmet a unircazal "exploder"?

Idea is to uplicate this constuection on a sufficiently olenge set in IRol, but a challenge is that wes \tilde{Q}_{n} are no longer disjoint.

IV: ENHANCED DISSIPATION

- Consider linear advection-diffusion equation:

$$
\partial_{t} \theta+\vec{\mu} \cdot \bar{\nabla} \theta-\nu \cdot \Delta^{\gamma} \theta=0, \quad \theta(0)=\theta_{0}, \quad r=1,2 \quad(A D E)
$$

with $\Omega=\mathbb{R} d$, or Ω bounded with periodic ar homag. Dizichlet/Neumann bic., u tangent to $\partial \Omega, \theta_{0} \in L^{2}(\Omega)$

- Denote by $S(t, s), 0 \leqslant s \leqslant t$, the solution operator of ($A D E$). take θ_{0} mean-free \Rightarrow uniqueness.
- Set $\vec{u}=A \bar{v}, A>0$ amplitude. Time change $\Rightarrow A=1$

$$
A \rightarrow \infty \quad v \rightarrow 0
$$

- Define olissipation time $\tau=\tau(\mu)$ of $(f l o w$ of $) \mu$:

$$
\sigma:=\operatorname{Inf}\left\{t>0 ;\|S(t+s, s) \theta(s)\|_{L^{2}} \leqslant \frac{1}{2}\|\theta(s)\|_{L^{2}}, s \geqslant 0\right\}
$$

Fact : $0<\tau<\infty, \quad \tau(\mu) \leqslant \tau(0)$.

Enhanced Dissipation cont.

- Say that $\vec{\mu}$ is dissipation enhancing if

$$
\tau(\vec{\mu}) \rightarrow 0 \text { as } \nu \rightarrow 0
$$

- \vec{u} dissipation enhancing \Rightarrow olissipation timescale $\sigma(\sqrt{\nu})$

$$
\Rightarrow \quad\|S(t, 0)\|_{o p} \leqslant e^{-H(v)(t)}, H(\nu) / \sqrt{v} \rightarrow \infty \rightarrow 0 .
$$

Examples: (1) steady flows satisfying a certain spectral condition \Rightarrow no H^{γ} eigenfunction (relaxation enhancing flows, constantin-Kiselev-Ryzhik-zlatos)
(2) mixing flows $\Rightarrow\|\theta(t)\|_{H^{-1}} \leqslant h(t)\left\|\theta_{0}\right\|_{H 1}$ (Coti Zelati-Delgadino-Elgindi, Feng-Iyer,...)
(3) certain shear on cellular flows for prepared data (Iyer-Xu-Zlatos, Bedzossian-Cotizelati.....)

Resolvent estimates

- In the literature, enhanced olissipation proved by essentially 2 methods: hypocsercivity oz usolvent estimates (bul also probabilistic methods).
- Hypocoercivity moue difficult to adapt to the care of hyper oe fractional olissipation, and when Ω unbounded (lack of Poincare's Inequality)
- Resolvent estimates may lead to more ustrictive conditions on μ.
- Exploit a Gearhart-Püss type usult foe maximally accretive (m-accretive) operators on Hilbert spaces.
m-Acczetivity and semigeoup decay rates
- A densely olefined linear operator $H: D(H) \subset H \rightarrow 2 L$ on a complex H ilbert space $(H,<, \nu)$ is called m-accretive if
(1) $R e\langle H f, f\rangle \geqslant 0 \forall f \in D(H)$ (accutivity)
(2) Range $(H+\xi I d)=H$, for some $\xi>0$ (maximality).
- If H is a closed, m-accutive operator on H, then (Wei):

$$
\left\|e^{-t H}\right\|_{o p} \leqslant e^{\frac{\pi}{2}-t \Psi(H)}, t \geqslant 0
$$

whee II. llop is the operator norm and

$$
\Psi(H):=\operatorname{Inf}\{\|(H-i \lambda) g\| / g \in D(H), \lambda \in \mathbb{R},\|g\|=1\}
$$

with U. U the Hilbert space noe in \mathcal{H}.

- goal : to estimate Ψ for $H_{\nu}=\nu[-\Delta)^{\gamma}+\vec{\mu} \cdot \nabla$ on $L^{2}(\Omega)$.

Example 1: Circularly symmetric and pipe parallel flows Show enhanced olissipation when $\vec{\mu}$ has a certain symmetry in 2 and 3 space dimensions:

$$
\vec{u}(r, \theta)=r \mu(r) \vec{e}_{\theta} \quad, r \geqslant 0, t \geqslant 0,
$$

where $\vec{e}_{\theta}=(-\sin \theta, \cos \theta) \Rightarrow$ circular shear flow, II. $\frac{3 D \text { case }}{}: \Omega=D(0,1) \times \mathbb{R}$ infinite, straight cylinder, $\vec{\mu}$ steady pipe parallel flow

$$
\vec{\mu}(r, \theta, z)=r \mu(r)\left(\sin (2 \pi r) \overrightarrow{e_{\theta}}+\cos (2 \pi r) \vec{e}_{z}\right.
$$

where $e_{z}=(0,0,1) \Longrightarrow$ akin to Poiscuille flow (r, θ) par, (r, θ, z) cylinduical coordinates.

Conditions on the velocity profile $\mu(r)$

- To apply Resolvent estimates, make assumptions on μ in both care Id II.
Assumption $1(2 D): \exists m, N \in \mathbb{N}, c_{1}>0, \delta_{0} \in \mathbb{R}_{+}$, Satisfying: $\forall \lambda \in \mathbb{R}$ and any $0<\delta<\delta_{0}, \exists n \leqslant N$ and $r_{1}, \ldots, r_{n} \in \mathbb{R}+$ such that

$$
|\mu(r)-\lambda| \geqslant c_{1} \delta^{m}, \forall\left|r-r_{j}\right| \geqslant \delta, \forall j=1 \ldots n .
$$

Example: $\mu(r)=r^{m}$, (Cotizelati \& Dolce).
Assumption $2(3 D): \exists m, N \in \mathbb{N}, c_{1}>0, \delta_{0} \in \mathbb{R}_{+}$, Satisfying: $\forall \alpha, \lambda \in \mathbb{R}$ and any $0<\delta<\delta_{0}, \exists u \leqslant N$ and $r_{1}, \ldots, r_{n} \in \mathbb{R}_{+}$such that

$$
|\mu(r) \sin (2 \pi r+\alpha)-\lambda| \geqslant c_{1} \delta^{m},\left|r-r_{j}\right| \geqslant \delta, \forall j=1 \ldots n
$$

Example: $\mu(r)=\cos (2 \pi r), m=2$ (c.f. Feng-Feng-wang).

Some umaiks

- Assumption 1 and 2 inspired by work of Cot zelati \& yallay on Taylor dispersion for shear flows.
- If μ satisfies assumption $1 \& 2$, it has a finite \# of critical points up to order m.
- In 2D, $\vec{\mu}$ unbounded. In SD, $\vec{\mu}$ is tangent to $\partial \Omega$. In both cases, $\vec{\mu}$ div. free and vanishes at $r=0$.
\Rightarrow in 3D impox periodic b. z in z and homogeneous Neumann bic. on θ in (r, θ) (Dirichlet ok too).
- convenient to apply the Fourier tzanoform in θ, z :

$$
\begin{array}{r}
H_{\nu, k}:=i k \mu(r)+\nu\left(-\partial_{r}^{2}-\frac{1}{r} \partial_{r}+\frac{k^{2}}{r^{2}}\right)^{\gamma}, k \in \mathbb{Z}, \gamma=1,2, \\
H_{p, k}:=i \mu(r)\left(k, \sin (2 \pi r)+k_{2} \cos (2 \pi r)\right)+\nu\left(-\partial_{r}^{2}-\frac{1}{r} \partial_{r}+\frac{k_{1}^{2}}{r_{1}^{2}}+k_{2}^{2}\right), \\
k=\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{1}^{2} .
\end{array}
$$

Main Results
theorem 1 (2D): Let $\vec{\mu}$ circularly symmetric satisfy Assumption 1. Let θ satisfy (ADE). $\exists C_{1}, C_{2}>0$ such that

$$
\left\|\theta_{\neq}(t)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leqslant C_{1} e^{-C_{2} \lambda_{\nu} t}\left\|\left(\theta_{0}\right) \neq\right\|_{L^{2}\left[\mathbb{R}^{2}\right]}
$$

where $\lambda_{\nu}=\nu^{\frac{m}{m+2}}, \theta_{\neq}:=\theta-\int_{0}^{2 \pi} \theta\left(r_{1} \theta, t\right) d \theta$
Theorem 2 (3D): Let \vec{u} parallel pipe flow satisfy A ssumption 2. Let θ satisfy (ADE). $\exists C_{1}, C_{2}>0$ such that

$$
\left\|\theta_{\neq}(t)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leqslant c_{1} e^{-c_{2} \lambda \nu t}\left\|\left(\theta_{0}\right) \neq\right\| L^{2}\left[\mathbb{R}^{2}\right]
$$

where $\lambda_{\nu}=\nu^{\frac{m}{m+2 \gamma}}, \theta_{\neq}:=\theta-\int_{0}^{2 \pi} \int_{0}^{2 \pi} \theta(r, \theta, z, t) d \theta d z$.
Note : $\theta \neq$ is the projection onto $\operatorname{ker}\left(H_{p}\right)^{\perp}$.
sketch of proof:
(1) Because of Plancherel's identity enough to bound $e^{-t} H_{p, k}$, where $H_{r, k}$ operator on $L^{2} r(\Omega)=L^{2}\left(\Omega, r d r d \theta d_{i}\right)$
(2) m-accutivity of $H \nu, k$ follows from m-accutivity of H_{ν} ria isometric isomorphism + orthogonal projection.
(3) Resolvent estimates fallows by energy estimate

Open Problems

- Moue examples of flows \vec{e} in $\mathbb{R}^{d}, d=1,2$.
- Are Assumption ll 2 necessary?
- Applications to non-lencar PDEs.

Example 2 : shear flows on torus
Let $\Omega=\Pi^{2}$ and $\vec{\mu}^{2}(x, y)=(\mu(y), 0)$ steady horizontal shear flow. Apply again the Fourier tzanoform in $x \Rightarrow$ apply the resolvent estimate to $H, k=\nu \Delta^{2} k+i k u(y), \Delta k=-k^{2}+\partial_{y^{2}}$, on $H=L^{2}\left([0,2 \pi] ; a_{y}\right)$ to bounol $H_{\nu}=\Delta^{2}+\mu(y) \partial_{x} 0 m \quad L^{2}(\pi 2)$.
the Assumption on the velocity peofile becomes:
Assumption 3 (shear $f(\circ 0)$: $J \mathrm{~m}, N \in \mathbb{N}$ and $\delta \infty \in\left(0, L_{2}\right)$ with the property that, for any $\lambda \in \mathbb{R}$ and any $0<\delta<\delta 0$, $\exists n \leqslant$ y and points $y_{1}, \ldots y_{n} \in\left[0, L_{2}\right]$ such that

$$
l \mu(y)-\lambda l \geqslant c_{1}\left(\frac{\delta}{L_{2}}\right)^{m}, \quad \begin{aligned}
& \quad \forall-y_{j} l<\delta \\
& \quad \forall \quad j \in l 1, \cdots, p l)
\end{aligned}
$$

Example: $\quad u(y)=(\sin y)^{m}$
then, the resolvent estimate give the following result.
Corollary: Let P_{k} de the h^{2} projection onto the $k-t h$ horizontal mode. Then, $A \quad \varepsilon g^{\prime}$, inolependent of ν and h

$$
\begin{aligned}
& \left\|e^{-H \nu t} P_{k}\right\|_{o p} \leqslant e^{-\varepsilon_{0}^{\prime} \nu \frac{m}{m+4}}|k| \frac{4}{m+4} t+\pi / 2 \\
\Rightarrow & \left\|e^{-H \nu t}\right\|_{0 p} \leqslant e^{-\lambda_{\nu} l^{\prime} t+\pi / 2}, \quad t \geqslant 0, \quad \lambda \nu^{\prime}=\varepsilon_{0}^{\prime} \nu \frac{m}{m+4}
\end{aligned}
$$

Remark : (1) we coucal also treat the case of a channel with periodic bounalary conolitions in y, anal Dirichlet or Meumann conolitions on θ, an foe the olisk or pipe.
(2) Feng-Feng - wang considered certain types of parallel flows on $\mathbb{T}^{3}=\left[0, L_{1}\right] \times\left[0, L_{2}\right] \times\left[0, L_{3}\right]$:

$$
\vec{\mu}(x, y, z)=\left(\mu(y) \sin \left(2 \pi y / L_{3}\right), \mu(y) \cos \left(2 \pi y\left[L^{3}\right), 0\right)\right.
$$

Applications to the 2D Kuramoto-Sivashinky equation

- Moolel far long wave-length instability in olissipative systems (flame front propagation, combustion).
-Work on 2D toms $\pi^{2}=[0, L 1] \times[0, L 2]$
scalar form $\quad \partial_{t} \phi+\Delta^{2} \phi+\Delta \phi+\left|\nabla \phi^{2}\right|=0$
for $\phi: \mathbb{T}^{2} \times[0, T] \rightarrow \mathbb{R}$
vector form $\quad \partial_{t} u+\Delta^{2} u+\Delta u+\mu \cdot \nabla \mu=0$ where $\mu=\nabla \phi$.
- $d=1 \Rightarrow$ global existence by energy methods (Tadmor) as $\int_{\mathbb{R}} \mu^{2} \partial \times \mu=0$.
- $d \geqslant 2 \Rightarrow$ no known Lyapunor functions (growing modes if $L i>2 \pi$, no max principle, no energy estimates)

Known results in dimension d >1 (not modified KSE)
Local well-posedness for $\phi_{0} \in L^{p}$ (Biswas-Swanson) Continuation cuiteria baxd on the L^{2} noom (Bellout - Benachour_titi, Feng-M., stanislanova-Stefanov)

Analyticity and Yevrey regularity (with rough data) for $t>0$ (Ambrox-M., Biswas-Swanson, Stanislanova-Stefanov)
Attzactor $\&$ eletermining mooles assuming solution global $\left(\|\nabla \phi(t)\| \leqslant G_{1}^{\prime} \forall t>0\right)$ (NikolaenKo-Sheuver-Temam)
ylobal existence for thin oz anisotropic domains
(Benachour-Kukavica-Rusin-Ziàne, KuKavica-Massatt, Sell-taboada), small data and no growing modes (Ambiose-M., Feng-M.), with advection (Coti zelat. - Dolce - Feng-Mo, Feng-M.), 1 gaowing moole (Amb2ox-M.)

Global existence for 2D KSE with ad vecfion

- Study $2 D$ KSE with advection by a shear flow \vec{u} :

$$
g_{t} \phi+\nu \Delta^{2} \phi+\nu \Delta \phi+\nu(\nabla \phi)^{2}+\vec{v} \cdot \nabla \phi=0 \quad \text { (AKSE) }
$$

where $\vec{\mu}=A \vec{v}, \nu=A^{-1}, \quad \vec{v}(x, y)=(u(y), 0)$.

- Advection has a large Kernel \Rightarrow no enhanced dissipation in the kernel \Rightarrow separate evolution on the Kernel.
- Given $g \in L^{2}\left(\pi^{2}\right)$, denote:

$$
\langle g\rangle(y)=\frac{1}{L_{1}} \int_{0}^{L_{1}} g(t, x, y) d x, \quad g_{\neq}(x, y)=g(x, y)-\langle g\rangle(y) .
$$

〈g〉 projection ento kernel of $u(y) \partial_{x}$.
g_{\neq}projection onto orthogonal complement in L^{2}

- Refer to $\langle g\rangle, g \neq$ as Kernel, pasjected components.
- From (AKSE), if ϕ solution of (AKSE), < $\phi>$ satisfies

$$
\partial_{t}\langle\phi\rangle+\frac{\nu}{2 L_{1}} \int_{0}^{L_{1}}\left|\nabla \phi_{\neq}+\nabla\langle\phi\rangle^{2}\right| d x+\nu \partial^{4}\langle\phi\rangle+p \partial^{2} y\langle\phi\rangle=0
$$ while $\phi \neq$ satisfies:

$$
\begin{aligned}
& \partial_{t} \phi_{\neq}+\mu(y) \partial_{x} \phi_{\neq}+\nu \Delta^{2} \phi_{\neq}=-\frac{\nu}{2}\left|\nabla \phi_{\neq}\right|^{2}+\frac{\nu}{2}\langle | \nabla \phi_{\neq 1}^{2} \nu \\
& -\nu \partial_{y} \phi_{\neq} \partial_{y}\langle\phi\rangle-\nu \Delta \phi_{\neq}
\end{aligned}
$$

\Rightarrow two equations coupled through $\partial_{y}\langle\phi\rangle \Rightarrow \operatorname{set} \psi=\partial_{y}\langle\phi\rangle$ that satisfies:

$$
\left.\partial_{t} \psi+\frac{p}{2 L_{1}} \int_{0}^{L_{1}} \partial_{y} \right\rvert\, \nabla \phi \neq 1^{2} \rho l x+\nu \psi \partial y \psi+\nu \partial \psi \psi+\gamma \partial_{y}^{2} \psi=0
$$

- An L^{2} continuation principle holels for these equations.

Main usult (cotizelati - Dolce - Feng - M.' 22) :
Let $\phi_{0} \in L^{2}\left(\mathbb{\pi}^{2}\right)$. Let $\mu(y)$ satisfy Assumption 3 . then, $A<\nu_{0}<1$ depending on $L_{1}, L_{2}, \|$ doll L^{2} such that for any $0<p<80, \exists$ global-in-time weak solutisu of ($A K S E$) with plata $\phi(0)=\phi_{0}$.
theorem extends to shear profile μ with a finite number of critical points of order $m \geq 2$, but the resolvent estimate yields a woes bound for semigroup $e^{-H \nu t .}$
the parameter γ o depends on the rate at which $\nu / \lambda(v) \rightarrow 0$ as $\nu \rightarrow 0$.

Bootstiap

- ylobal existence theozem bared on a bootsteap argument (He-Beolrossian).
- Lecal existunce theory implies for $t>0$:

Bootstrap Assumptions:
(1) $\left\|\phi_{\neq}(t)\right\|_{L^{2}} \leqslant 8 c^{-\lambda \nu t / 4}\left\|\phi_{\neq}(\rho)\right\|_{L^{2}}$;
(2) $\nu \int_{0}^{t} u \Delta \phi_{\neq}(s) d s \leqslant 4\left\|\phi_{\neq}(0)\right\|_{L^{2}}^{2}$.

Let to be the maximal time such that (1), (2) holds on [e,to]. then on [0, to]:
$\|\psi(t)\|_{L^{\frac{1}{y}}}^{2}+\nabla \int_{0}^{t}\left\|\partial_{y}^{2} \psi(s)\right\|_{L^{2} y}^{2} d s \leqslant G_{1}\left(\left\|\phi_{\neq}(0)\right\|_{L^{2}}\|\psi(0)\|_{L^{2} y}^{2}\right) e^{C \nu t}$
For p small, secay of the semigzoup implies boststzap.

Proof of main usuet
Lemma (Bootstrap estimates): If ν_{0} small chough and $0<\nu<\nu_{0}$, then for all $t \in\left[0, t_{0}\right]$:
(1) $\left\|\phi_{\neq}(t)\right\|_{L^{2}} \leqslant 4 e^{-\lambda \nu t / 4}\left\|\phi_{\neq}(\theta)^{\prime}\right\|^{2}$;
(2) $\nu \int_{0}^{t}\|\Delta \phi \neq(s)\|_{L^{2}} \leqslant 2\left\|\phi_{\neq}(0)\right\|_{L^{2}}^{2}$.

Step 1: By continuation in L^{2} and Lemma, to $=0 \Rightarrow$ $\phi \neq \epsilon L \cos \left([0,+\infty) ; L^{2}\left(\pi^{2}\right)\right) \wedge L^{2}\left((0, \infty) ; H^{2}\left(\pi^{2}\right)\right)$.
Step 2 : Hence $\psi=\partial_{y}<\phi \nu \in L^{c s}(\tau D, T) ; L^{2}\left(\pi^{1}\right) \cap$ $\left.L^{2}(\tau \rho, T) ; H^{2}\left(T^{a}\right) \Rightarrow \bar{\Phi} \in L^{\infty}(\tau \cap, T)\right), \forall 0<T<\infty$.
site 3: $\nabla^{2} \varphi=\nabla^{2} \varphi_{t}+\nabla^{2} \phi \in L^{2}\left(\pi^{2}\right)$,
skep 4: By Poincare' t triangle inequality, $\left.\langle\phi\rangle \in L^{\infty}(r 0, T) ; L^{2}\right)$ $\left.\Rightarrow \phi=\phi \neq+\langle\phi\rangle \in \cos (\tau 0, T): L^{2}(\mathbb{R})\right)$.

