Randomized trace estimation and determinants

Alice Cortinovis

Joint work with Daniel Kressner
4 May 2022 - University of Arkansas Spring Lecture Series

Motivation

When do we need to compute the determinant? What does it have to do with trace estimation?

Example: Gaussian process regression

\square J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. GPy-Torch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration. (NeurIPS 2018)

Gaussian process: Distribution with mean $\mu(\cdot)$ and covariance $k(\cdot, \cdot)$.
Goal: Train a Gaussian process on a lot of data (up to 500k points), that is, given a class of possible k depending on some hyperparameters θ, find θ that best fit the data by minimizing

$$
L(\theta \mid \text { training data } X, y):=\log \operatorname{det}(K)-y^{T} K^{-1} y,
$$

where K is the discretization of $k(\cdot, \cdot)$ on $X \times X$.
They use randomized trace estimation!
S. Ubaru, J. Chen, and Y. Saad. Fast estimation of $\operatorname{tr}(f(A))$ via stochastic Lanczos quadrature. (SIAM J. Matrix Anal. Appl., 2017)

Applications for computing determinants

－Statistical learning
Y．Zhang \＆W．E．Leithead Approximate implementation of the logarithm of the matrix determinant in Gaussian process regression（Journal of Statistical Computation and Simulation，2007） R．H．Affandi，E．Fox，R．Adams，and B．Taskar．Learning the parameters of determinantal point process kernels．（International Conference on Machine Learning 2014）
I．Han，D．Malioutov，and J．Shin Large－scale log－determinant computation through stochastic Chebyshev expansions．（International Conference on Machine Learning 2015） K．Dong，D．Eriksson，H．Nickisch，D．Bindel，and A．Wilson．Scalable Log Determinants for Gaussian Process Kernel Learning．（NeurIPS 2017）
家
J．R．Gardner，G．Pleiss，D．Bindel，K．Q．Weinberger，and A．G．Wilson．GPy－Torch：Blackbox matrix－matrix Gaussian process inference with GPU acceleration．（NeurIPS 2018）
－Lattice quantum chromodynamics

宫C．Thron，S．J．Dong，K．F．Liu，and H．P．Ying．Padé－Z_{2} estimator of determinants．Physical Review D－Particles，Fields，Gravitation and Cosmology，1998）
－Markov random fields models
－Graph theory：det＝number of spanning trees

Which algorithm would you use to compute the determinant of a symmetric positive definite (SPD) matrix B ?

Which algorithm would you use to compute the determinant of a symmetric positive definite (SPD) matrix B ?

- Definition by Laplace expansion (exponential time!)
- Compute the eigenvalues and take their product (cubic time)
- Take Cholesky factorization $B=L L^{T}$ for lower triangular matrix L and take $\operatorname{det}(B)=L_{11}^{2} \cdots L_{n n}^{2}$ (this is what Matlab does - still cubic time!)

The determinant as the trace of the matrix logarithm

Definition (Matrix function [Higham'2008 book])

 and a real-valued function f defined on the eigenvalues of B we define

$$
f(B):=\square \begin{array}{|c}
\begin{array}{|c}
f\left(\lambda_{1}\right) \\
\\
\ddots \\
f\left(\lambda_{n}\right)
\end{array} \\
\hline
\end{array}
$$

Theorem
For an SPD matrix B, we have $\log \operatorname{det}(B)=\operatorname{trace}(\log (B))$.
Note: We do not want to compute the whole $\log B$.

Other applications of trace estimation

- Frobenius norm estimation: $\|B\|_{F}^{2}=\operatorname{trace}\left(B^{T} B\right)$.
[Gratton/Titley-Peloquin'2018], [Roosta-Khorasani/Székely/Ascher'2015].
- Other Schatten- p norms: $\|B\|_{p}^{p}=\operatorname{trace}\left(\left(B^{T} B\right)^{p / 2}\right)$ [Dudley/Saibaba/Alexanderian'2020].
- Trace of other matrix functions:
- Trace of the inverse (Uncertainty quantification [Kalantzis/Bekas/Curioni/ Gallopoulos'2013], Lattice quantum chromodynamics [Wu et al.'2016])
- Counting \#triangles in a graph ($\frac{1}{6}$ trace $\left(B^{3}\right)$) [Avron'2010]
- Trace of $\exp (B)$ is the Estrada index of a graph (see Prof. Saad's lecture tomorrow).

The Hutchinson trace estimator

- Want to estimate trace (A) for symmetric (indefinite) $A \in \mathbb{R}^{n \times n}$
(2) Can only do matrix-vector products with A
\rightsquigarrow Why does this setting make sense?
When $A=f(B)$, computing $f(B) v$ is faster than computing $f(B)$!

Outline of the (rest of the) talk

(1) The Hutchinson trace estimator

- The estimator
- Convergence analysis
- Numerical examples
(2) Approximation of the quadratic forms
- Relation to quadrature
- Convergence results (briefly)
(3) Combined results for log-determinant approximation and numerical experiments
(9) Conclusion

Hutchinson trace estimator

Theorem

For a random vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ such that $\mathbb{E}\left[X X^{T}\right]=I$ it holds

$$
\mathbb{E}\left[X^{T} A X\right]=\operatorname{trace}(A)
$$

Most common choices for X :

- Gaussian vectors $\left(X \sim \mathcal{N}\left(0, I_{n}\right)\right) \rightsquigarrow$ variance $=2\|A\|_{F}^{2}$.
- Rademacher vectors (± 1 entries) \rightsquigarrow variance $=2\|A-\operatorname{diag}(A)\|_{F}^{2}$; Idea: Take N independent copies $X^{(1)}, \ldots, X^{(N)}$ of X and approximate

$$
\operatorname{trace}(A) \approx \operatorname{trace}_{N}(A):=\frac{1}{N} \sum_{i=1}^{N}\left(X^{(i)}\right)^{T} A X^{(i)} .
$$

Hutchinson's trace estimator: Example

Figure: The behavior of $\left|\operatorname{trace}(A)-\operatorname{trace}_{N}(A)\right|$ when increasing N (\# probe vectors).

Existing bounds for indefinite matrices

For SPD matrices, bounds on relative error are well studied: [Avron/Toledo'2011], [Roosta-Khorasani/Ascher'2015], [Gratton/Titley-Peloquin'2018].
For indefinite case (e.g. $A=\log B$), we cannot expect bound on relative error!

Theorem ([Avron'2010])

We have $\mathbb{P}\left(\left|\operatorname{trace}_{N}(A)-\operatorname{trace}(A)\right| \geq \varepsilon\right) \leq \delta$ for

$$
N \geq \frac{6}{\varepsilon^{2}}\|A\|_{*}^{2} \log \frac{2 n}{\delta} \text { (Rademacher), } \quad N \geq \frac{20}{\varepsilon^{2}}\|A\|_{*}^{2} \log \frac{4}{\delta} \text { (Gaussian) }
$$

where $\|A\|_{*}=$ nuclear norm (sum of singular values).

In the context of log-determinant:

Theorem ([Ubaru/Chen/Saad'2017])

For SPD matrix B with condition number $\kappa(B)$ and $N \geq \frac{24 n^{2}}{\varepsilon^{2}} \log \frac{2}{\delta} \log \left(1+\kappa(B)^{2}\right)$ we have (Rademacher case)

$$
\mathbb{P}\left(\left|\operatorname{trace}_{N}(\log B)-\log \operatorname{det} B\right| \geq \varepsilon\right) \leq \delta
$$

One quadratic form instead of N

Embedding trick: write $\operatorname{trace}_{N}(A)=\frac{1}{N} \sum_{i=1}^{N}\left(X^{(i)}\right)^{T} A X^{(i)}$

\rightsquigarrow we only need tail bounds for $X^{T} A X$.

Analysis for Gaussian vectors

Theorem

For Gaussian vectors, $\mathbb{P}\left(\left|X^{T} A X-\operatorname{trace}(A)\right| \geq \varepsilon\right) \leq 2 \exp \left(-\frac{\varepsilon^{2}}{4\|A\|_{F}^{2}+4 \varepsilon\|A\|_{2}}\right)$.
Proof ingredients:
(1) Moment generating function of random variable $Y:=X^{T} A X-\operatorname{trace}(A)$ can be written explicitly using rotational invariance of Gaussian distribution + properties of χ^{2} distributions
(2) Use Chernoff bounds to conclude [Book by Boucheron/Lugosi/Massart'2013]

Theorem ([C./Kressner'2021])

For Gaussian vectors and $N \geq \frac{4}{\varepsilon^{2}}\left(\|A\|_{F}^{2}+\varepsilon\|A\|_{2}\right) \log \frac{2}{\delta}$ we have

$$
\mathbb{P}\left(\left|\operatorname{trace}_{N}(A)-\operatorname{trace}(A)\right| \geq \varepsilon\right) \leq \delta
$$

Analysis for Rademacher vectors (1)

Main problem wrt Gaussian case: No rotational invariance!
First try: Exploit boundedness. We want

$$
\mathbb{P}\left(\left|\operatorname{trace}_{N}(A)-\operatorname{trace}(A)\right| \geq \varepsilon\right) \leq \delta
$$

- Hoeffding's inequality: given Y_{1}, \ldots, Y_{N} zero-mean independent r.v. with $\left|Y_{i}\right| \leq C$ we have $\mathbb{P}\left(\left|\sum_{i=1}^{N} Y_{i}\right| \geq \varepsilon\right) \leq 2 \exp \left(-\frac{\varepsilon^{2}}{2 n C^{2}}\right)$. This gives

$$
N \geq \frac{2 n^{2}}{\varepsilon^{2}}\|A\|_{2}^{2} \log \frac{2}{\delta}
$$

- Bernstein's inequality: if, in addition, $\mathbb{E}\left[\left|Y_{i}\right|^{2}\right] \leq V$ then $\mathbb{P}\left(\left|\sum_{i=1}^{N} Y_{i}\right| \geq \varepsilon\right) \leq 2 \exp \left(-\frac{\varepsilon^{2}}{2 N V+\frac{2}{3} C \varepsilon}\right)$. This gives

$$
N \geq \frac{4}{\varepsilon^{2}}\left(\|A\|_{F}^{2}+\frac{\varepsilon}{3} n\|A\|_{2}\right) \log \frac{2}{\delta}
$$

Existing estimates for indefinite matrices

With Rademacher random vectors

y-axis: Value of ε such that $\mathbb{P}\left(\left|\operatorname{trace}_{N}(A)-\operatorname{trace}(A)\right| \geq \varepsilon\right) \leq 0.1$.
These are 2000×2000 matrices obtained by

- Left: $A=\operatorname{randn}(n) ; A=A+A^{\prime} ;$
- Right: $d=[(1: n / 2) . \wedge(-2),-((n / 2+1): n) . \wedge(-2)]$;
$[Q, \quad]=q r($ randn $(n)) ; A=Q * \operatorname{diag}(d) \star Q^{\prime}$;

Analysis for Rademacher vectors (2)

Assume A symmetric with zero diagonal.
Hanson-Wright inequality (in [Rudelson/Vershynin'2013]): for $X=\left(X_{1}, \ldots, X_{n}\right)$ with X_{i} independent and sub-Gaussian ${ }^{1}$ random variables with sub-Gaussian norm K we have

$$
\mathbb{P}\left(\left|X^{T} A X\right| \geq \varepsilon\right) \leq 2 \exp \left(-c \min \left(\frac{\varepsilon^{2}}{K^{4}\|A\|_{F}^{2}}, \frac{\varepsilon}{K^{2}\|A\|_{2}}\right)\right)
$$

We want explicit constants for Rademacher random vectors!

- [Book by Boucheron/Lugosi/Massart'2013]: $2 \exp \left(-\frac{\varepsilon^{2}}{32\|A\|_{F}^{2}+128 \varepsilon\|A\|_{2}}\right)$
- [Book by Foucart/Rauhut'2013]: $2 \exp \left(-\min \left\{\frac{3 \varepsilon^{2}}{128\|A\|_{F}^{2}}, \frac{\varepsilon}{32\|A\|_{2}}\right\}\right)$
- [Adamczak'2003]: $2 \exp \left(-\frac{\varepsilon^{2}}{16\|A\|_{F}^{2}+16 \varepsilon\|A\|_{2}}\right)$
${ }^{1} \mathrm{~A}$ random variable Y is sub-Gaussian if there exists $s>0$ such that $\mathbb{E}\left[\exp \left((Y / s)^{2}\right)\right]<+\infty$. The sub-Gaussian norm of Y is defined as $\inf \left\{s>0 \mid \mathbb{E}\left[\exp \left((Y / s)^{2}\right)\right] \leq 2\right\}$

Analysis for Rademacher vectors (3)

Theorem ([C./Kressner'2021])

Let A be symmetric with $\operatorname{diag}(A)=0$. Then

$$
\mathbb{P}\left(\left|X^{T} A X\right| \geq \varepsilon\right) \leq 2 \exp \left(-\frac{\varepsilon^{2}}{8\|A\|_{F}^{2}+8 \varepsilon\|A\|_{2}}\right) .
$$

Proof ingredients:
(1) Bound entropy of random variable $X^{T} A X$ using logarithmic Sobolev inequalities from [Adamczak'2003]
2) Get a bound on the moment generating function via entropy method/Herbst argument [Boucheron/Lugosi/Massart'2013]
(3) Use Chernoff bounds to conclude

Corollary ([C./Kressner'2021])

Let A be symmetric (indefinite), use Rademacher vectors.
For $N \geq \frac{8}{\varepsilon^{2}}\left(\|A-\operatorname{diag}(A)\|_{F}^{2}+\varepsilon\|A-\operatorname{diag}(A)\|_{2}\right) \log \frac{2}{\delta}$ we have

$$
\mathbb{P}\left(\left|\operatorname{trace}_{N}(A)-\operatorname{trace}(A)\right| \geq \varepsilon\right) \leq \delta
$$

New estimates for indefinite matrices

With Rademacher random vectors

y -axis: Value of ε such that $\mathbb{P}\left(\left|\operatorname{trace}_{N}(A)-\operatorname{trace}(A)\right| \geq \varepsilon\right) \leq 0.1$.
These are 2000×2000 matrices obtained by

- Left: A = randn(n); A = A + A';
- Right: d=[(1:n/2).^(-2), -((n/2+1):n).^(-2)];
[$Q, \quad]=q r(\operatorname{randn}(\mathrm{n}))$; $A=Q * \operatorname{diag}(\mathrm{~d}) * Q^{\prime}$;

Numerical example: triangle counting

$B=$ adjacency matrix of undirected graph \rightsquigarrow \#triangles $=\frac{1}{6} \operatorname{trace}\left(B^{3}\right)$.

Upper border of shaded area $=$ value of ε for which N guarantees accuracy ε with failure probability $\delta=0.05$.

Matrix from https://snap.stanford.edu/data/ca-GrQc.html, $n=5242$.

Summary

We now have (tight) tail bounds for Hutchinson's trace estimator with indefinite matrices.

$$
\operatorname{trace}(A) \approx \operatorname{trace}_{N}(A):=\frac{1}{N} \sum_{i=1}^{N}\left(X^{(i)}\right)^{T} A X^{(i)}
$$

To get $\mathbb{P}\left(\left|\operatorname{trace}_{N}(A)-\operatorname{trace}(A)\right| \geq \varepsilon\right) \leq \delta$ we can choose

- $N \geq \frac{8}{\varepsilon^{2}}\left(\|A-\operatorname{diag}(A)\|_{F}^{2}+\varepsilon\|A-\operatorname{diag}(A)\|_{2}\right) \log \frac{2}{\delta}$ for Rademacher;
- $N \geq \frac{4}{\varepsilon^{2}}\left(\|A\|_{F}^{2}+\varepsilon\|A\|_{2}\right) \log \frac{2}{\delta}$ for Gaussian.

Recall that we are interested in $\log \operatorname{det}(B)=\operatorname{trace}(\log B)$ therefore we need a way to compute $\left(X^{(i)}\right)^{T} \log (B) X^{(i)}$.

Approximating the quadratic forms

Quadrature and Lanczos method

G. H. Golub and G. Meurant. Matrices, moments and quadrature with applications. (2010)Let $B=Q \cdot D \cdot Q^{T}$ spectral decomposition and let $x \in \mathbb{R}^{n}$:

$$
x^{T} \log (B) x=\left(Q^{T} x\right)^{T} \cdot \log (D) \cdot\left(Q^{T} x\right)=\int_{\lambda_{\min }}^{\lambda_{\max }} \log (t) \mathrm{d} \mu(t),
$$

where

$$
\mathrm{d} \mu(t)=\sum_{i=1}^{n} z_{i}^{2} \delta_{\lambda_{i}}(t), \quad z=Q^{T} x
$$

Gauss quadrature:

$$
\text { integral } \approx \sum_{i=1}^{m} w_{i} \log \left(\theta_{i}\right)=: I_{m} .
$$

Approximation of quadratic forms via Lanczos method

Theorem ([Golub/Meurant'2010])

Let T_{m} be matrix obtained after m steps of Lanczos method applied to B with starting vector x. Then $I_{m}:=\sum_{i=1}^{m} w_{i} \log \left(\theta_{i}\right)=e_{1}^{T} \log \left(T_{m}\right) e_{1}$ where

- nodes $\theta_{i}=$ eigenvalues of T_{m}
- weights $w_{i}=$ squares of first elements of normalized eigenvectors of T_{m}

For unit vector x, approximate $x^{T} \log (B) x$ as

Lanczos algorithm:

$$
\text { Initialize } u_{1} \leftarrow x /\|x\|_{2} \text { and } \beta_{0} \leftarrow 0
$$

$$
\text { for } i=1, \ldots, m \text { do }
$$

$$
\alpha_{i} \leftarrow u_{i}^{T} B u_{i}
$$

$$
r_{i} \leftarrow B u_{i}-\alpha_{i} u_{i}-\beta_{i-1} u_{i-1}
$$

$$
\beta_{i} \leftarrow\left\|r_{i}\right\|_{2}
$$

$$
u_{i+1} \leftarrow r_{i} / \beta_{i}
$$

end for
$T_{m} \leftarrow\left[\begin{array}{cccc}\alpha_{1} & \beta_{1} & & \\ \beta_{1} & \alpha_{2} & \ddots & \\ & \ddots & \ddots & \beta_{m-1} \\ & & \beta_{m-1} & \alpha_{m}\end{array}\right]$

Obtained after m steps of Lanczos

Quadrature and polynomial approximation

Theorem

Assume $\left[\lambda_{\min }, \lambda_{\max }\right] \subseteq[-1,1]$. Let f be analytic on Bernstein ellipse \mathcal{E}_{ρ}, let
$M_{\rho}=\max _{\mathcal{E}_{\rho}}|f(z)|$, then

$$
\left|x^{T} f(A) x-I_{m}\right| \leq \frac{4 M_{\rho}}{1-1 / \rho} \rho^{-2 m}
$$

Gauss quadrature is exact for polynomials up to degree $2 m-1$; if we take Chebyshev polynomial $P_{2 m-1}$, thanks to analyticity j th coefficient is bounded by $2 M_{\rho} / \rho^{j}$.

It also holds for general spectral intervals [$\lambda_{\min }, \lambda_{\text {max }}$], with a shifted and scaled ellipse (see, e.g., [Ubaru/Chen/Saad'2017, C./Kressner'2021]).

Polynomial approximation of logarithm

For B SPD with condition number $\kappa(B)$ and $x \neq 0$ we have

$$
\begin{aligned}
& \left|x^{T} \log (B) x-\|x\|_{2}^{2} \cdot e_{1}^{T} \log \left(T_{m}\right) e_{1}\right| \\
& \quad \leq 2\|x\|_{2}^{2}(\sqrt{\kappa(B)+1}+1) \log (2 \kappa(B))\left(\frac{\sqrt{\kappa(B)+1}-1}{\sqrt{\kappa(B)+1}+1}\right)^{2 m} .
\end{aligned}
$$

For $f=\log$:

- Reduce to case $\lambda_{\text {max }}=1 / \lambda_{\text {min }}=\sqrt{\kappa(B)}$ via $\log (\lambda B)=\log (B)+\log \lambda \cdot I$.
- Take Bernstein ellipse with radius

$$
\rho=\frac{\sqrt{\kappa(B)+1}-1}{\sqrt{\kappa(B)+1}+1}
$$

- Note that maximum of \log is on the real axis.

Combined results and numerical experiments

Putting everything together

$$
\text { approximation }:=\frac{1}{N} \sum_{i=1}^{N}\left\|X^{(i)}\right\|_{2}^{2}\left(\log \left(T_{m}\right)\right)_{1,1} \approx \frac{1}{N} \sum_{i=1}^{N}\left(X^{(i)}\right)^{T} \log (B) X^{(i)}
$$

where T_{m} is obtained from Lanczos with starting vector $X^{(i)}$.

Theorem ([C./Kressner'2021])

Suppose that we use Rademacher random vectors and:
(i) Number of samples

$$
N \geq 32 \varepsilon^{-2}\left(\|\log B-\operatorname{diag}(\log B)\|_{F}^{2}+\frac{\varepsilon}{2}\|\log B-\operatorname{diag}(\log B)\|_{2}\right) \log \frac{2}{\delta}
$$

(ii) Number of Lanczos iterations $m \geq \frac{\sqrt{\kappa(B)+1}}{4} \log \left(8 \varepsilon^{-1} n \sqrt{\kappa(B)}\right)$.

Then

$$
\mathbb{P}(\mid \text { approximation }-\log \operatorname{det}(B) \mid \geq \varepsilon) \leq \delta .
$$

Gaussian random vectors

Theorem ([C./Kressner'2021])

Suppose that we use Gaussian random vectors and:
(i) Number of samples

$$
N \geq 16 \varepsilon^{-2}\left(\|\log (B)\|_{F}^{2}+\varepsilon\|\log (B)\|_{2}\right) \log \frac{4}{\delta}
$$

(ii) Number of Lanczos iterations

$$
m \geq \frac{\sqrt{\kappa(B)+1}}{4} \log \left(4 \varepsilon^{-1} n^{2}(\sqrt{\kappa(B)+1}+1) \log (2 \kappa(B))\right)
$$

If, additionally, $n \geq 2$ and $N \leq \frac{\delta}{2} \exp \left(\frac{n^{2}}{16}\right)$, then
$\mathbb{P}(\mid$ approximation $-\log \operatorname{det}(B) \mid \geq \varepsilon) \leq \delta$.
Need to have $\|X\|_{2}^{2}$ under control.

Some numerical experiments

$B \in \mathbb{R}^{6400 \times 6400}$ is a 2D Gaussian kernel from [Meyer/Musco/Musco/Woodruff'2020].

Some numerical experiments

$B \in \mathbb{R}^{102158 \times 102158}$ from SuiteSparse matrix collection (thermomec_TC).

Conclusion

Conclusions

Summary:

a) In several applications one wants the trace of a matrix function, e.g. $\log \operatorname{det}(B)=\operatorname{trace}(\log B)$.
b) Cheap approximations of $v^{T} f(B) v$ can be obtained via Lanczos/quadrature.
c) Hutchinson's trace estimator $\operatorname{trace}_{N}(A)=\frac{1}{N} \sum_{i=1}^{N} X_{i}^{T} A X_{i}$ can be used for estimating the trace of a matrix which is available through matrix-vector multiplications
\rightsquigarrow Presented improved convergence analysis of Hutchinson estimator.

Alice Cortinovis and Daniel Kressner, On randomized trace estimates for indefinite matrices with an application to determinants. Foundations of Computational Mathematics, 2021.

