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GraphBLAS: Graph algorithms in the language of linear algebra



Traditional BFS: 
while (q not empty)
    for each i in frontier q
        for each edge (i,j)
            if (j not yet seen)
                add j to next q
                parent (j) = i
                flag j as seen

Breadth-first-search (initialization):
q = {source} ; parent = [ size n, all zero ]
parent (source) = source
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Traditional BFS: 
while (q not empty)
    for each i in frontier q
        for each edge (i,j)
            if (j not yet seen)
                add j to next q
                parent (j) = i
                flag j as seen

GraphBLAS BFS: using the ANY-SECONDI semiring
while (q not empty)
    q<￢parent> = A’*q      // masked matvec
    parent<q> = q           // masked assignment

Breadth-first-search (initialization):
q = {source} ; parent = [ size n, all zero ]
parent (source) = source

SECONDI multiplier:  z = A(i,k)*q(k) = k, the parent node id
additive operator: ANY function:  any(x,y) = x or y, arbitrary choice

GraphBLAS: Graph algorithms in the language of linear algebra



Semirings for graph algorithms:
(ANY,SECONDI): breadth-first-search
(MIN,+): single source shortest path
and many more

Graph algorithms are simple to write:
in C, MATLAB, Python, Julia

Yet with good performance: close to
highly-tuned specialized kernels
(some methods as fast as
the GAP benchmark, others)

Non-blocking mode:
         intermediate results need not be

     materialized

Appears in:
        RedisGraph, Linux distros

 Anaconda Python, MATLAB, Julia,...

 



SuiteSparse:GraphBLAS implementation

●16 matrix formats:
○sparse, O(n+e) memory:  dense vector of sparse vectors
○hypersparse, O(e) memory: sparse vector of sparse vectors
○bitmap, O(mn) memory: dense matrix with dense boolean matrix
○ full, O(mn) memory: a dense matrix with all entries present
○each of these by row or by column
○each can be iso-valued

●data types: bool, signed/unsigned integer (8, 16, 32, 64), float, double, complex
●user-defined types and operators
●iso-valued matrices:  all entries in the structure have the same value
●lazy modifications:

○pending tuples:  lazy insertions
○zombies: lazy deletions
○ jumbled vectors: lazy sort



Triangle counting:  API non-blocking allows C not to be materialized
    L = tril (A,-1) ;
    U = triu (A,1) ;
    C<L> = L*U’ ;          
    # triangles = sum (C)

K-truss: C(i,j) = # of triangles incident on edge (i,j)
    C = A
    while (C changing)
        C<C> = C*C ;
        C = select (C >= k-2)

Sparse deep neural network: 20 minutes to write, 100x speedup over baseline
    for each layer k
        Y = select ((Y +.* W{k}) +.+ Bias{k}) > 0) ;
        M = Y > 32 ; 
        Y<M> = 32 ;
    
  

Pagerank:
    while (...)
        r += A’ * (r ./ d) ; // PLUS-SECOND semiring

GraphBLAS: a few more algorithms



Single-source shortest path (Δ-stepping):  pathlen = sssp (A, source, Δ)
    
    pathlen (src) = 0
    reach (src) = true
    s (src) = true
    AL = select (A <= Δ)
    AH = select (A > Δ)
    for step = 1:n
        tmasked<reach,replace> = pathlen
        tmasked = select (tmasked < step*Δ)
        while (tmasked not empty)
            tReq = AL'*tmasked using the (min,+) semiring
            s<tmasked> = true
            tless = (tReq .< pathlen) using set intersection
            if (tless is empty) break 
            reach<tless> = true
            tmasked<tless> = select (tReq < step*Δ)
            pathlen<tless> = tReq
        end while
        tmasked<s,replace> = pathlen
        tReq = AH'*tmasked using the (min,+) semiring
        tless = (tReq .< pathlen) using set intersection
        pathlen = min (pathlen, tReq)
        reach<tless> = true
        reach<s> = empty
        if (reach is empty) break
        clear s
    end for

●splits adjacency matrix into AL (light 
edges) and AH (heavy edges)

● inner loop: a single bucket, handles 
paths of length < (step*Δ)

●outer loop: advances to the next 
bucket

●new shortest paths found via the 
(min,+) semiring



GraphBLAS in Python, Julia, and MATLAB
Tim Mattson (Intel), Michel Pelletier (Graphegon, Inc.), 

Will Kimmerer (MIT), Tim Davis (Texas A&M)
 

● GraphBLAS: graph algorithms via linear algebra on sparse adjacency matrices, in different semirings
● Bulk, high-level operations, well suited for Python, Julia, and MATLAB
● SuiteSparse:GraphBLAS + Python, Julia, and MATLAB

For example:  Matrix multiply, with a mask, accumulator

● GraphBLAS mathematical notation:  C<M> ⊗= A min.⊕ B
● C:             GrB_mxm (C, M, GrB_TIMES_FP32, GrB_MIN_PLUS_FP32, A, B, NULL) ;
● Python:     A.mxm (B, out=C, mask=M, accum=FP32.TIMES, semiring=FP32.MIN.PLUS)
● Julia:         C = *(min,+)(A,B)

        mul(A,B,(min,plus),mask=M,accum=*)
● MATLAB:  C = GrB.mxm (C, M, ‘*’, A, ‘min.+’, B) ;



GraphBLAS in Julia and Python
M. Pelletier, W. Kimmerer, TD, T. Mattson



PageRank in Julia and Python
M. Pelletier, W. Kimmerer, TD, T. Mattson



Betweenness Centrality in Python and MATLAB

...



Betweenness Centrality in Python and MATLAB

...





Performance of BFS: 

Urand Kron Twitter Web Road
GAP 0.58 0.31 0.22 0.34 0.25

SuiteSparse 1.20 0.51 0.35 0.69 3.54

time in seconds, NVIDIA DGX Station (Intel Xeon, 20 hardware cores, 40 threads). Draft GraphBLAS v5.

Performance of Betweenness Centrality: 
Urand Kron Twitter Web Road

GAP 46.4 31.5 10.8 3.0 1.5

SuiteSparse 31.7 23.1 9.25 6.4 34.6

GAP, by Scott Beamer: 6 parallel kernels, fastest method in most cases; but difficult code to write, not a user library.
SuiteSparse:GraphBLAS: also parallel, simple to write, sometimes faster; easy code to write, able to write “any” algorithm



Performance of PageRank: 

Urand Kron Twitter Web Road
GAP 25.3 19.8 15.2 5.1 1.0

SuiteSparse 27.8 21.4 17.2 9.4 1.4

time in seconds, NVIDIA DGX Station (Intel Xeon, 20 hardware cores, 40 threads)

Performance of Triangle Counting: 
Urand Kron Twitter Web Road

GAP 21.8 374.1 79.6 22.2 0.03

SuiteSparse 34.0 930.0 242.6 34.7 0.20

GAP: about tied with GraphBLAS for PageRank.  About 3x faster than GraphBLAS for TC.
SuiteSparse: not yet fully exploiting non-blocking mode, so L=tril(A); C<L>=L’*L ; nt=sum(C) constructs C then sums it up.



Performance of Connected Components: 

Urand Kron Twitter Web Road
GAP 1.7 0.53 0.23 0.22 0.05

SuiteSparse 4.5 3.3 1.5 2.0 0.97

time in seconds, NVIDIA DGX Station (Intel Xeon, 20 hardware cores, 40 threads)

Performance of Single-Source Shortest Paths: 
Urand Kron Twitter Web Road

GAP 7.2 4.9 2.0 0.81 0.21

SuiteSparse 25.3 17.2 8.0 9.4 46.0

SuiteSparse:  parallel code, easy to write, but typically 3x to 4x slower than the GAP, still worse for the Road graph,
for Connected Components and Single-Source-Shortest-Paths.



Parallel matrix-matrix multiply
●masked dot product:  C<M>=A’*B
●unmasked dot product: C=A’*B or C<￢M>A’*B
●saxpy-style, C=A*B, C<M>=A*B, or C<￢M>=A*B.  Mix of 4 kinds of tasks:

■coarse Gustavson:  C(:,j1:j2) = A*B(:,j1:j2) with O(n) workspace
■ fine Gustavson: C(:,j) = A*B(:,j) with many threads, atomics and shared O(n) workspace
■coarse Hash: C(:,j1:j2) = A*B(:,j1:j2) with O(f) workspace, f = max “flops” for any C(:,j)
■ fine Hash: C(:,j) = A*B(:,j) with many threads, uses atomics and shared O(f) hash space
■all four tasks in any C=A*B

A*B all variants: total 10K lines of code, 
not including 320K lines of generated code for 1,498 semirings

References:
Nagasaka, Matsuoka, Azad, Buluç, “High Performance Sparse matrix-matrix products on Intel KNL and multicore architectures”, ICPP’18.
Gustavson, Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition, ACM TOMS, 1978.



      Fine Hash/Gustavson task with mask C<M>=A*B:
Each thread given a range 
i1:i2 of rows of B:

C(:,j)+=A*B(i1:i2,j)

Each hash entry contains a 
row index i and 2-bit atomic 
state.

Fine Hash tasks:
Phase1: scatter M into hash
Phase2: numerical work
Phase3/4: count C(:,1:m)
Phase5: gather from hash



Parallel assignment:  C<M>(i,j)=A     C<M>(i,j)+= A
●A blizzard of combinations:
○mask:  present or not, complemented or not, structural or not
○ replace option: true or false
○accumulator: present or not
○A: matrix or scalar
○S: constructed or not
○C, M, A:  sparse/hypersparse/bitmap/full, by row/col

●Algorithms:
○some use S = C(I,J), symbolic extraction.   Given C(I,J)=A where I and J are vectors of indices.
○C(I(2),J(3)) = A(2,3),  then S(2,3) = position of C(I(2),J(3)) in the data structure for C.
○Allows for C [ S (x,y) ] = A (x,y) assignment for some row x and column y.
○some algorithms do not use S and thus do not construct it.



Parallel assignment:  C<M>(I,J)=A, using S
About 40 different algorithms. Most are 2-pass. For example: C<M>(I,J)=A, with S:

●sort I and J index lists, if needed, and remove duplicates; permute A if changed
●S = C (I,J), a parallel structural extraction, does not use the mask M.
●Symbolic analysis:  construct parallel tasks for 1st and 2nd passes
●First pass:  Iterate through all of set union of (A,S), like A+S.
○For each entry found in set union A+S, lookup M.  If false, skip it.  Otherwise:
○ if both A and S present:  assign C[S(i,j)] = A (i,j), updating the existing value
○ if A present but not S:  C[S(i,j)] = A(i,j) must be added to C as a new entry:  pending tuple (count them)
○ if S present but not A:  C[S(i,j)] must be deleted:  mark it for deletion (a zombie)

●Middle pass: cumulative sum of all pending tuple counts, for all tasks
●Second pass: repeat the algorithm, but only insert pending tuples into the pile



MATLAB: native sparse matrices vs @GrB objects
@GrB vs MATLAB syntax @GrB advantages / limitations @GrB speedup relative to 

MATLAB native on 20 cores

C = A*B
(sparse times sparse)

@GrB: any semiring, any mask
MATLAB: just plus-times
caveat: Tim D wrote them all

30x in MATLAB 2020b, 1x
versus GrB v3.3.3 in R2021a, 
but another 2x to 8x with 
v7.0.4

C(I,J) = A Same syntax, more types: sparse int8, 
int16, …, single complex, ...

2x to 1000x

C = sparse (2^60, 2^60)
C = GrB (2^60, 2^60)

MATLAB: too big
@GrB: no problem; hypersparse

C(M) = A MATLAB mask: same syntax, O(e2) 
@GrB much faster: O(e log e)

MATLAB: 5 days
GraphBLAS: 0.8 seconds
500,000x speedup



MATLAB: native sparse matrices vs @GrB objects
@GrB vs MATLAB syntax @GrB advantages / limitations @GrB speedup relative to 

MATLAB native on 20 cores

C = S*F 
(sparse-times-full)

@GrB: any semiring, any mask
MATLAB: just plus-times

up to 10x

C = F*S
(full-times-sparse)

ditto up to 17x

C = A’ up to 10x

C=A+B
(sparse plus sparse)

up to 10x

Intel® Xeon® E5-2698 v4 CPU with 20 cores and 40 threads, with gcc 9.4.  MATLAB R2021a, released March 2021



GraphBLAS versus the Intel MKL sparse library



LAGraph: graph algorithm library based on GraphBLAS (not yet v1.0)

●6 polished, stable algorithms (the GAP benchmark):
■Breadth-first search
■Betweenness-centrality
■PageRank
■Connected Components
■Single-source Shortest-Path
■Triangle Counting

●stable utilities
■malloc/calloc/realloc/free wrappers
■create/destroy the LAGraph_Graph
■compute properties: degree, A’, # diag entries
■delete properties
■display graph
■Matrix Market file I/O (very slow)
■Sorting
■ thread control
■ timing
■ type management

●many experimental algorithms:
■K-truss
■All K-truss
■Bellman-Ford single-source shortest path
■Maximal independent set
■Triangle Centrality
■Community detection w/ label propagation
■Deep Neural Network Inference
■Strongly Connected Components
■Minimum Spanning Forest
■Local Clustering Coefficient
■K-core
■Counting all size-4 graphlets
■Triangle polling
■Fiedler vector 

●experimental utilities:
■ random matrix, vector generators
■Binary matrix file I/O (very fast),

    serialize/deserialize, parallel LZ4 comp.



SuiteSparse:GraphBLAS connections
●RedisGraph:  Property graph database built using SuiteSparse:GraphBLAS: 1500 github stars, > 100K 

docker downloads, 1 million github pulls
●Apple: used internally
●Google: hosted on the Google Cloud
●Amazon AWS
●IBM: “We tried several graph database technologies and we really found that RedisGraph is the 

one that gave us the speed to solve instant real-time problems, yielding a minimum 5x 
improvement in query speed”

●MDmetrix: managing and understanding medical data for better outcomes.  For example: solving 
the opioid crisis by drastically reducing morphine prescriptions, while maintaining pain control

●Anaconda Python
●every Linux distro
●MATLAB C=A*B, 30x speedup
●Julia:  the recommended package for core sparse linear algebra, also enables complete access to all 

GraphBLAS features (data types, semirings, …) for graph algorithms
●NVIDIA: collaboration to develop CUDA kernels, with a run-time JIT
●GraphStax.ai:  discovering toxic chemicals via AI, relying on GraphBLAS
●Linkurious: visualizing RedisGraph data with Ogma
●MIT Lincoln Lab: Center for Applied Internet Data Analysis (CAIDA) Telescope: 40 trillion packets 

analyzed with GraphBLAS.  Hypersparse matrices essential (n = entire internet protocol)





Feb 2017: 1st line of SuiteSparse:GraphBLAS
Nov 2017: GraphBLAS v1, sequential
July 2018: RedisGraph v1
July 2019: GraphBLAS v3, OpenMP
Oct 2020: RedisGraph Award by Bloor Research
Jan 2021: GraphBLAS v4, up to 200x faster than v1
Jan 2022: ~100KLOC, ~40KLOC test suite





Work in progress, and future work

●LAGraph: graph algorithms using GraphBLAS (nearing v1.0)
●GPU acceleration (CUDA, with J. Eaton and C. Nolet, NVIDIA)
●Julia integration (just announced v0.7), replacing Julia SparseArrays
● further Python integration
●RedisGraph: already lots of users.  Future: faster, more features
●JIT for faster user-defined types and operations
●aggressive non-blocking mode, kernel fusion
●x=A\b over a field
●more built-in types (FP16, complex integers, …)
● faster kernels (GrB_mxm for sampled dense-dense matrix multiply)
●matrices with shallow components
●…



GraphBLAS non-blocking mode
GxB_select (&L, … GxB_TRIL, A, ...) ;                             // L=tril(A,-1)
GxB_select (&U, … GxB_TRIU, A, ...) ;                             // U=triu(A,1)
GrB_mxm (C, L, NULL, GxB_PLUS_PAIR_INT64, L, U, GrB_DESC_ST1) ;   // C<L>=L*U’
GrB_reduce (s, NULL, GrB_PLUS_INT64_MONOID, C, NULL) ;            // s=sum(C) as GrB_Scalar
GrB_free (&C) ;  GrB_free (&L) ; GrB_free (&U) ;   // C, L, U now known to be temporary
GrB_extractElement (&ntriangles, s) ;              // ntriangles as int64_t 

●non-blocking API allows intermediate matrices to not be instantiated
●allows for depenency DAG with fusion and lazy evaluation
●no need to form L, U, and C
●not yet exploited in SuiteSparse:GraphBLAS.   In progress.

A
L

U
C ntriangless

opaque objects user visible value (int64_t)



GrB_mxm for sampled dense-dense matrix product (SDDMM)
●C = S .* (A*B’) where S is sparse, A and B are dense, and “.*” denotes the Hadamard product
●Required by factor analysis algorithms in machine learning

// C = S, a deep copy
GrB_dup (&C, S) ;
// C<struct(C)> *= (A*B’)
GrB_mxm (C, C, GrB_TIMES_FP32, GrB_PLUS_TIMES_FP32, A, B, GrB_DESC_ST0) ;

●the accumulator is eWiseAdd (set union) not eWiseMult (set intersection) but here they are the same
●but could be faster by exploiting the properties of the problem
●C can be modified in place; no change of sparsity structure (because of the accumulator)
● the Mask M is aliased to C, and used structurally: a powerful property

■ for example: C<struct(C)> = 1 sets all entries of C to 1, converting it to iso-valued in O(1) time
●needs a specific kernel in SuiteSparse:GraphBLAS for best performance
●kernel fusion of dup and mxm could save some work (aggressive non-blocking exploit), but a special 

case for GrB_mxm would be the biggest performance gain, and is low-hanging fruit (easy algorithm!)



In summary: GraphBLAS strengths & limitations
Strengths:

●avoids “for all j in Adj(i) …” loops; akin to triply-nested loops vs C=A*B
●simple high-level API; bulk operations give lots of power to underlying implementation
● typically simple algorithms; most parallel graph algorithms can be expressed in linear algebra
●non-blocking mode in API: can fuse kernels and skip instantiating intermediate results
●SuiteSparse:GraphBLAS: 

○some asynchronous features can be expressed (ANY monoid)
○no loss of performance in Python vs C vs Julia API; nearly same in MATLAB
○faster than the Intel MKL sparse, vastly faster than MATLAB (conventional semiring)
○parallel performance can rival or even beat highly-tuned graph libraries

Limitations:

●no “for all j in Adj(i) …” loops, but can work side-by-side with vertex-centered libraries
●some algorithms hard to express (Depth-First-Search, Afforest CC, ...)
●SuiteSparse:GraphBLAS: non-blocking mode: just zombies, pending tuples, & lazy sort so far
● fully asynchronous methods hard to express (PageRank with Gauss-Seidel, for example) 



Tim Davis, Texas A&M University


