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Motivation

Nonlinear Eigenvalue Problem (NLEVP)

Given T : D → Cn×n, find λ ∈ D ⊆ C and
nonzero vectors x , y ∈ Cn such that

T (λ)x = 0, yHT (λ) = 0.

Standard EVP if T (λ) = A− λI ,A ∈ Cn×n.

Photonic Crystals

Copyright: Yablonovitch et al.

Nanoelectronics

Copyright: European Commission

Particle Accelerator Cavity

Copyright: Fermilab

We live in an eigen world. B. Broughton.
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Linear and Nonlinear Eigenvalue Problems (NLEVPs)

Given a nonempty open set D ⊆ C and a matrix-valued function
T : D → Cn×n, the nonlinear eigenvalue problem consists of finding scalars
λ ∈ D (eigenvalues) and nonzero vectors x , y ∈ Cn (right and left
eigenvectors) satisfying

T (λ)x = 0, yHT (λ) = 0. (1)

In principle, T can be any function of λ, in practice, we consider
polynomial, rational or exponential functions.
In the following, we assume that T ∈ H(D,Cn×n) (holomorphic in D).

Remark:

The linear eigenvalue problem find λ ∈ C and a nonzero vector x ∈ Cn

such that Ax = λx is a nonlinear eigenvalue problem with T (λ) = A− λI .
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A Classification of Eigenvalue Problems

problem # eigenvalues

standard eigenvalue problem T (λ) = A− λI n

generalized eigenvalue problem T (λ) = A− λB n

quadratic eigenvalue problem T (λ) = λ2A2 + λA1 + A0 2n

polynomial eigenvalue problem T (λ) =
d∑

i=0
λiAi dn

nonlinear eigenvalue problem T (λ) =
d∑

i=0
fi (λ)Ai ∞

by M. Embree
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Some Characteristics of Nonlinear Eigenvalue Problems

The eigenvalues of (1) are solutions of det(T (z)) = 0.
T (even if regular, i.e., det(T (z)) ̸≡ 0) may have infinitely many
eigenvalues.
The eigenvectors associated with distinct eigenvalues do not have to
be linearly independent.
The algebraic multiplicity of an isolated eigenvalue, although finite, is
not bounded by the problem size n.

For a more detailed description, see:

quadratic EVPs [Tisseur, Meerbergen 2001], [Mehrmann, Voss 2004],
polynomial EVPs [Mackey, Mackey, Tisseur 2015],
nonlinear EVPs [Voss 2014] and [Güttel, Tisseur 2017].
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Example (Güttel and Tisseur 2017)

Let T (z) =

[
eız

2
1

1 1

]
. Eigenvalues of T are roots of detT (z) = eız

2 − 1,

i.e.,
λk = ±

√
2πk, k = 0,±1,±2, ....
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Figure: 42 (of infinitely many) eigenvalues of T. λ0 = 0 has algebraic multiplicity
2, and all other eigenvalues are simple (algebraic multiplicity 1). Vector [1,−1]T

is a right and left eigenvector for all eigenvalues λ.
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Challenging Eigenvalue Computations

Electronic structure of an insulator

Copyright: Opensource Handbook of

Nanoscience and Nanotechnology

Many-body Schrödinger equation

Ĥψ = Eψ,

ψ wave function,
Ĥ Hamiltonian operator,
E total energy.

Kohn-Sham equation(
− ℏ2

2m
∇2+veff [ρ](r)

)
ϕi (r) = ϵiϕi (r),

where

ρ(r) =
∑

occupied states
|ϕi (r)|2.

Challenge: Hamiltonian of size ∼ 1 million, get 10% bands
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Divide and Conquer Approach and Interior Eigenvalues

Get the spectrum by ’slices’
and use polynomial filtering

Compute slices separately

However polynomial filters are ...

• ineffective if the spectrum looks like this
10

9

• ruled out when dealing with generalized eigenvalue problems.

Remedy:

• rational filters of the form ρ̃(z) =
∑
i

ωi
σi−z are an alternative,

• exploit Cauchy integral representation of the spectral projector.
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Brief Review of Cauchy Integrals and Contour Integration

Theorem (Cauchy’s Theorem (Cauchy-Goursat Theorem))

If f (z) is analytic on a simply connected open region D ⊂ C and if C is a
closed contour in D, then ∫

C
f (z)dz = 0.

Theorem (Cauchy’s Integral Formula)

Suppose that f (z) is analytic on a simply connected open region D ⊂ C
and C is a closed contour in D, then

1
2πı

∫
C

f (z)

z − a
dz =

{
f (a), if a lies inside C
0, if a lies outside C.

.
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Theorem (Cauchy’s Argument Principle)

If f (z) is a meromorphic function on and inside a closed contour C, and
f (z) has no zeros or poles on C, then

1
2πı

∫
C

f ′(z)

f (z)
dz = (# zeros of f )− (# poles of f ).
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Definition (f (A) via Cauchy Integral [Higham 2008])

For A ∈ Cn×n,

f (A) :=
1

2πı

∫
C
f (z)(zI − A)−1dz ,

where f is analytic on and inside a closed contour C that encloses spectrum
σ(A) of matrix A.

This definition of a matrix function f (A) establishes
a Cauchy Integral Formula for Matrices.

What is the connection between Cauchy integrals and
solving eigenvalue problems?
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Counting Eigenvalues Inside C
For f (z) := det(zI − A) the Cauchy’s argument principle allows to
determine the number of eigenvalues of A inside C, i.e.,

|σC(A)| :=
1

2πı

∫
C

f ′(z)

f (z)
dz .

Inclusion regions for matrix eigenvalues [Brunaldi, Mellendorf 1994],
[Beattie, Ipsen 2003], [Varga 2004], [Hochstenbach, Singer,
Zachlin 2008], [Trefethen, Embree 2005].

Counting eigenvalues [Di Napoli, Polizzi, Saad 2014], [Bertrand,
Philippe 2001], [Kamgnia, Philippe 2013].

Stochastic estimation methods for eigenvalue density [Futamura,
Tadano, Sakurai 2010], [Maeda, Futamura, Sakurai 2011]

Approximating spectral densities [Wang 1994], [Silver, Roeder, Voter,
Kress 1996], [Roeder, Silver, Drabold, Dong 1997], [Lin,
Yang, Saad 2016], [Xi, Li, Saad 2018].
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Suppose, that matrix A ∈ Cn×n is diagonalizable, i.e.,

A = XΛX−1 =
n∑

i=1

λixiy
H
i .

Now, for function f analytic on and inside a contour C enclosing σ(A)

f (A) =
1

2πı

∫
C
f (z)(zI − A)−1dz

=
1

2πı

∫
C
f (z)X (zI − Λ)−1X−1dz

= X


1

2πı

∫
C

f (z)
z−λ1

dz
. . .

1
2πı

∫
C

f (z)
z−λn

dz

X−1

= X

f (λ1)
. . .

f (λn)

X−1 =
n∑

i=1

f (λi )xiy
∗
i .
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Cauchy Integral Representation of the Spectral Projector

Suppose that f (z) is the indicator function, such that for D ⊂ σ(A)

f (z) =

{
1, z ∈ D
0, z ∈ σ(A)\D

D ⊂ σ(A) and C = ∂D,

Then, for and C = ∂D

f (A) =
1

2πı

∫
C
f (z)(zI − A)−1dz

=
n∑

i=1

f (λi )xiy
∗
i = H

=
∑
λi∈D

xiy
H
i =: PC .

Therefore, the matrix PC is the spectral projector onto the invariant
subspace of matrix A associated with all eigenvalues of matrix A in D, i.e.,
enclosed by the contour C.
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We have showed that the spectral projector P associated with the
eigenvalues of matrix A enclosed by the contour C is given by

PC =
1

2πı

∫
C
(zI − A)−1dz .

W.l.o.g. let us assume we are interested in eigenvalues located in
D = [−1, 1]. Then C can be taken (and is typically taken) to be a circle
centered at the origin of the complex plane and radius unity.

Hence, using an nc -point quadrature yields an approximation of the
spectral projector PC onto the invariant subspace associated with all
eigenvalues of A enclosed by the contour C, i.e.,

PC ≈
nc∑
i=1

ωi (σi I − A)−1 =: ρ(A),

with integration nodes σi and weights ωi , i = 1, . . . , nc .
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How can we use this connection to develop a

computationally feasible and effective eigenvalue
solvers?
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The Nonlinear FEAST Algorithm

with B. Gavin (LinkedIn) and E. Polizzi (UMass Amherst)
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FEAST method [Polizzi 2009]

Task: Compute ne eigenvalues of a linear eigenvalue problems Ax = λx
inside contour C.

Solution: Given m0 ≥ ne dimensional subspace represented by the column
vectors of an initial n ×m0 matrix Q compute

Q =
nc∑
i=1

ωi (σi I − A)−1Q ≈ 1
2πı

∫
C
(zI − A)−1 Q dz = PCQ

and use it in the Rayleigh-Ritz procedure, i.e., solve a projected
eigenvalue problem

QHAQu = λu.

Since, in general, the range of Q may initially not be a good approximation
of the eigenspace of matrix A corresponding to the eigenvalues inside the
contour C, we need to iteratively refine the subspace Q.
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FEAST Algorithm

Input: Subspace Q (random) of dimension m0 with n ≫ m0 ≥ m,
contour C

Output: m eigenvalues of matrix A inside C
1. Repeat until convergence
2. Compute Q = PCQ
3. Orthogonalize Q
4. Compute AQ = QHAQ
5. Solve AQU = UΛ
6. Compute Q = QU
7. Check convergence of m wanted eigenvalues inside C
end
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FEAST Characteristics
Combines subspace iteration method with efficient contour
integration technique used to approximate a spectral projector PC .
Accelerated subspace iteration algorithm in conjunction with the
Rayleigh-Ritz procedure, non-adaptive accelerator which is a rational
matrix function that approximates the spectral projector, i.e.,

ρ(A) =
nc∑
i=1

ωi (zi I − A)−1.

Projection method onto subspace of a fixed dimension, unlike SS or
Jacobi-Davidson method.
Similar to inverse subspace iteration, but uses multiple shifts to
accelerate convergence, i.e., executing inverse subspace iteration with
matrix (σI − A)−1, is equivalent to using FEAST algorithm with a
single quadrature node σ.
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FEAST Characteristics

Main building block is numerical integration resulting in solving
independent linear systems, each for multiple right-hand sides, i.e., in
practice the subspace Q is computed as

Q =
nc∑
i=1

ωiQi ,

using the solutions Qi of the nc independent linear systems of the form

(σi − A)Qi = V .

Optimized sparse direct solvers, e.g., PARDISO, as well as iterative
methods, can be used to solve these linear systems.
Highly parallelizable.
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Contour Integral Eigenvalue Solvers

Linear Eigenvalue Problems

SS method [Sakurai, Sugiura, 2003], [Sakurai, Tadano 2007].
FEAST [Polizzi 2009], [Tang, Polizzi 2014], [Kestyn, Polizzi,

Tang 2016].
DD accelerated eigensolver [Kalantzis, Kestyn, Polizzi, Saad 2018].
other [Xi, Saad 2016], [Kalantzis, Xi, Saad 2018], [Li, Xi,

Erlandson, Saad 2019].

Nonlinear Eigenvalue Problems

Beyn’s method [Beyn, 2010], [Beyn, Effenberger, Kressner 2011].
SS-type methods [Asakura, Sakurai, Tadano, Ikegami, Kimura

2009], [Asakura, Sakurai, Tadano, Ikegami, Kimura
2010], [Yokota, Sakurai 2013].

nonlinear FEAST [Gavin, M., Polizzi 2018].
other [Embre, Gugercin, Brennan 2019], [El-Guide, M., Saad

2020], [Saad, El-Guide, M. 2020].
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Newton’s Method for Nonlinear Eigenvalue Problems

Note that solving a nonlinear eigenvalue problem (1) with normalization
cHx = 1 is equivalent to solving a nonlinear problem

F
([

x
λ

])
= 0, with F

([
x
λ

])
:=

[
T (λ)x
cHx − 1

]
.

Aplying Newton’s method to F yields the following iteration

T (λk)xk+1 = −(λk+1 − λk)T
′(λk)xk , cHxk+1 = 1,

which is equivalent to the nonlinear inverse iteration method.
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Nonlinear Inverse Iteration [Unger 1950, Ruhe 1973]

Solve T (λk)vk = T ′(λk)xk for vk

Set λk+1 = λk −
cHxk
cHvk

Compute xk+1 =
vk

∥vk∥

Residual Inverse Iteration [Neumeier 1985]

Step 1: Given wk , xk ∈ Cn compute λk+1 as a solution of

wH
k T (λ)xk = 0. (2)

Step 2: Given a shift σ ∈ C replace T ′(λk) by a finite difference and
T (λk)

−1 by T (σ)−1, compute

xk+1 = xk − T−1(σ)T (λk+1)xk ,

and normalize xk+1.
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Theorem (Keldysh 1951)

Suppose T (z) has m semi-simple eigenvalues λ1, . . . , λm (counting
multiplicities) in the region D ⊂ C. Then

T (z)−1 = V (zI − Λ)−1UH + R(z), (3)
V = [v1, . . . , vm],U = [u1, . . . , um],
Λ = diag(λ1, . . . , λm),
uHi T (λi )vi = 1,
R(z) is analytic in D.

By Cauchy’s integral formula

1
2πı

∫
C
f (z)T (z)−1 dz = Vf (Λ)UH .
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Contour Integration for Nonlinear Eigenvalue Problems

Nonlinear variants of the Sakurai-Sugiura (SS) method
based on block Hankel matrices (SS-H method),
for the polynomial eigenvalue problems [Asakura et al. 2009] and
eigenvalue problems of analytic matrix functions T (λ) [Asakura et al.
2009],
cost efficient and highly scalable,
the accuracy of obtained solutions is relatively low.

Beyn’s integral method [Beyn 2010]
uses the zeroth and first-order moments matrices to reduce an NLEVP
with m ≪ n eigenvalues inside C to a linear eigenvalue problem of
dimension m,
highly accurate,
based on the idea of Keldysh to probe a Jordan decomposition
(conceptually very simple but known to be highly sensitive to
perturbations).
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Projection SS method [Yokota, Sakurai 2013]
addresses the problem of low accuracy in the nonlinear SS-H method,
uses the same contour integrals as the SS-H method, however, the
approximate eigenpairs are extracted from the underlying subspaces
via Rayleigh-Ritz procedure,
gives better accuracy than the methods of [Asakura et al. 2009] and
[Beyn 2010].

All presented methods use the moments of the Cauchy integral of T−1(λ),
i.e.,

1
2πı

∮
C

zkT−1(z) dz , k ≥ 0.

• Beyn’s method uses the k = 0 and k = 1 moments,
• SS-type methods use as many moments as necessary for convergence,
• standard FEAST uses only the k = 0 moment, which does not work in

the case of the nonlinear T (λ).
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The Nonlinear FEAST (NLFEAST) Algorithm

Let us assume that the nonlinear FEAST algorithm should be a
generalization of nonlinear inverse iteration

xk+1 = T (λk)
−1T ′(λk)xk , (4)

that uses multiple shifts at once.

Hence, we would expect a nonlinear FEAST contour integral (for a single
vector) to be of the form

q =
1

2πı

∮
C

T (z)−1T ′(λk)xk dz . (5)

In practice, however, the update procedure in (4) does not converge to
correct eigenpairs. Using a constant shift z ̸= λk in (4) results in the
nonlinear inverse iterations converging to the eigenvalues of matrix T (z).
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The residual inverse iteration solves this problem by approximating the
derivative T ′(λk) which, when inserted into (4), produces the following
update rule

xk+1 =
I − T (z)−1T (λk)

z − λk
xk ,

which combined with (5) yields

q =
1

2πı

∮
C

I − T−1(z)T (λk)

z − λk
xk dz . (6)

In the case of linear eigenvalue problem, i.e., T (λ) = A− λI , the
approximation of the derivative is exact, and (6) is equal to the contour
integral for the linear FEAST algorithm.

The nonlinear FEAST is a generalization of the residual inverse
iteration using multiple shifts.
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From an initial set of approximate eigenvectors Q generate a refined
subspace Q, i.e.,

Q =
1

2πı

∮
C

(
Q − T−1(z)T (Q, Λ̃)

)
(zI − Λ̃)−1 dz ,

and solve a projected nonlinear eigenvalue problem QHT (λ)Qu = 0.

T (Q, Λ̃) is the block residual, i.e., for the polynomial eigenvalue problem of
degree d the block form of the residual function yields

T (Q, Λ̃) =
d∑

i=0

AiQΛ̃i .

For a general nonlinear eigenvalue problem, the i th column vector of the
block residual T (Q, Λ̃) is the residual vector T (λ̃i )qi , where qi is the i th

column vector of Q and λ̃i is the corresponding Ritz value.
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Nonlinear FEAST Characteristics
Combines residual inverse iteration methods with efficient contour
integration technique to construct a good projection space.
Accelerated projection method in conjunction with the
Rayleigh-Ritz procedure, non-adaptive accelerator which is a rational
matrix function that generates a good projection space of a fixed
dimension.
Similar to residual inverse iteration, but uses multiple shifts to
accelerate convergence, i.e., executing residual inverse iteration on (1)
is equivalent to using nonlinear FEAST algorithm with a single
quadrature node σ.
Numerical integration results in solving independent linear
systems, each for multiple right-hand sides, hence optimized sparse
direct solvers as well as iterative methods, can be used.
Small nonlinear eigenvalue problems can be solved efficiently.
Highly parallelizable.
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Convergence Analysis of the NLFEAST Algorithm
Given a Rayleigh functional p(v) NLFEAST (with exact contour
integration) is a fixed point iteration for

FFEAST (v) = β(v)
1

2πı

∮
C

1
z − p(v)

(I − T (z)−1T (p(v)))v dz .

Theorem (Fixed Point Equivalence for the NLFEAST)

Let v ∈ Cn and cHv ̸= 0 such that (2) has a unique solution p(v) and
suppose w(v) satisfies w(v)HT (z)v ̸= 0. Then the following statements
are equivalent: (i) FFEAST (v) = v and (ii) T (p(v))v = 0.

Theorem (Characterization of the Eigenvector Error)

Let (λ, x) be an eigenpair of problem (1) and w a function such that
w(x)HT ′(λ)x ̸= 0 and w(x)T (σ)x ̸= 0. Then, there exists a neighborhood
N (x) of x , such that for any pair xk , xk+1 ∈ N (x) corresponding to one
step of nonlinear FEAST iteration xk+1 = FFEAST (xk), the eigenvector
error satisfies

∥xk+1 − x∥ = O(∥xk − x∥2).
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Numerical Examples
Example 1: Scattering resonances in 1D

As an example of open boundary quantum transmission problem, we
consider the problem of scattering resonances in 1D with the following
compactly supported finite square model potential

V (r) =

{
−V0, r ∈ [−L, L]

0, otherwise
,

with V0 > 0 and width 2L = π
√

2 [Cancès, Nectoux 2017].

We are interested to determine the Siegert states [Siegert 1939]
u ∈ H1(−L, L) and the associated resonances k ∈ C such that for all
v ∈ H1(−L, L)

L∫
−L

u′v ′ + Vuū′dx = ık
(
u(L)v̄(L) + u(−L)v̄(−L)

)
+ k2

L∫
−L

uv̄dx .
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In the case of V : R → C being bounded with compact support in [−L, L],
the set of discrete solutions (ui , ki ) ∈ H1(−R,R)×C can be approximated
using the finite element space Vh ⊂ H1(−L, L), i.e.,

T (kh)uh =
(
k2
hAh + ıkhBh − Ch

)
uh = 0,

where

Ah =
h

6


2 1 0 0 . . . 0
1 4 1 0 . . . 0
0 1 4 1 . . . 0
...

...
...

. . .
...

...
0 . . . 0 1 4 1
0 . . . 0 0 1 2

 ,Bh =


1 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0
0 0 . . . 0 1

 ∈ Rn+2×n+2,

and

Ch =
1
h


1 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
...

...
...

. . .
...

...
0 . . . 0 −1 2 −1
0 . . . 0 0 −1 1

+ V0Ah ∈ Rn+2×n+2.



Draft

The associated linear eigenvalue problem has a form[
−ıBh Ch

I O

] [
khuh
uh

]
= kh

[
Ah O
O I

] [
khuh
uh

]
. (7)

−300 −200 −100 0 100 200 300
Real Part

−35

−30

−25

−20

−15

−10

−5

0

5

Im
a
g
in
a
ry
 P
a
rt

Exact Eigenvalues

Figure: All n = 302 scattering resonances for potential V0 = 10 obtained via
linearization (7).
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There are twenty-two 22 complex scattering resonances lying inside the
circle centered at 0.0 with radius r = 15.5. The nonlinear FEAST computes
10−10 accurate approximations of scattering resonances in 4 iterations
using nc = 16 integration nodes and the subspace of size m0 = 30.
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Figure: The nonlinear FEAST approximations of m0 = 30 eigenvalues for the
scattering resonance problem for potential V0 = 10. NLFEAST captures all of the
22 eigenvalues inside of the integration contour, plus 8 eigenvalues that are
closest to the integration contour while still being outside of it.
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Example 2: Hadeler Problem

As an example of a general nonlinear eigenvalue problem, let us consider
the Hadeler problem [Hadeler 1967], [Betcke, Higham, Mehrmann,
Schröder, Tisseur 2013]:

T (λ) = (eλ − 1)B1 + λ2B2 − B0,

with the matrix elements of B0, B1, and B2 being

B0 = b0I , B1 = (b
(1)
jk ), B2 = (b

(2)
jk )

b
(1)
jk = (n + 1 −max(j , k))jk, b

(2)
jk = nδjk + 1/(j + k),

where n is the dimension of the eigenvalue problem and b0 is a parameter.
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Let us consider n = 200 and b0 = 100 following [Ruhe 1973].
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Figure: Eigenvalues of the the Hadeler problem. All of the eigenvalues are real;
there are n eigenvalues less than zero, and n eigenvalues greater than zero.
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m0 = 10. The right plot shows results for several values of m0, with nc = 8.



Draft
Rational Approximation Method for NLEVPs
with M. El-Guide(Mohammed VI Polytechnic University) and Y. Saad

(University of Minnesota)
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Rational Approximation of Matrix Value Function

Let us now consider a matrix-valued function T (λ) of the form

T (λ) = f0(λ)A0 + f1(λ)A1 + f2(λ)A2 + . . .+ fp(λ)Ap, (8)

with holomorphic functions f0, . . . , fp : Ω → C and constant coefficient
matrices A0, . . . ,Ap ∈ Cn×n. W.l.o.g. we assume f0(λ) = 1 and f1(λ) = λ,
such that (8) has the form

T (λ) = −B0 + λA0 + f1(λ)A1 + . . .+ fp(λ)Ap. (9)

Following the Cauchy integral representation of each function fj(λ) inside a
region enclosed by a contour C, we assume that each fj(λ) in (9) is well
approximated by a rational function, i.e.,

fj(λ) ≈
nc∑
i=1

ωij

λ− σi
, λ ∈ Ω,

where σi ’s are quadrature nodes located on the contour C and the ωij ’s
the corresponding quadrature weights of the nC -point quadrature rule.
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’Linearization’ of the surrogate problem

Thus, with defining Bi :=
∑p

j=0 ωijAj and vi :=
x

σi−λ , i = 1, . . . , nc we
obtain the following surrogate eigenvalue problem

T̃ (λ)x = (−B0 + λA0)x −
nc∑
i=1

Bivi , (10)

and its ’linearization’
(λ− σ1)I I

(λ− σ2)I I
. . .

...
(λ− σnc )I I

−B1 −B2 . . . −Bnc λA0 − B0




v1
v2
...
vnc
x


︸ ︷︷ ︸

w

= 0. (11)

Eigenpairs of (10) provide good approximations to the eigenpairs of (1)
with eigenvalues inside the contour C.
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Consequently, solutions of the surrogate eigenvalue problem T̃ (λ)x = 0 can
be obtained by solving the generalized linear eigenvalue problem

Aw = λMw , (12)

with

M =


I

I
. . .

. . .
A0

 , A =


σ1I −I

σ2I −I
. . .

...
σnc I −I

B1 B2 . . . Bnc B0

 . (13)

Note that matrices M and A are each of dimension (ncn+ n)× (ncn+ n),
but they will never be stored explicitly.
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Part I: Shift-and-invert on the full system

Using shifted inverse iteration, requires solving linear system with a shifted
matrix (A− σM) at each step, i.e., solving linear systems of the form[

D F
BT B0

] [
x
y

]
=

[
a
b

]
. (14)

Here, we can exploit the sparsity of D and F and easily form the following
block LU factorization of matrix A

L =

[
I 0

BD−1 I

]
, U =

[
D F
0 S

]
,

where S = C − BD−1F is the Schur complement of the block B0.
Solving (14) requires:

(1) solving the system Sy = b − BTD−1a,
(2) substituting y in the first part of (14) to obtain x from Dx = a− Fy .
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Let wk =
[
vk ; xk

]
be a vector obtained at the k-th step of the inverse

iteration procedure. Each step of the shifted inverse power method (inverse
iteration) requires solving the linear system

(A− σM)wk+1 = Mwk or (A− σM)

[
vk+1

xk+1

]
=

[
vk

xk

]
. (15)

System (15) is of the same form as that in (14) and it can be solved the
same way, resulting in the following steps

xk+1 = S(σ)−1(A0x
k − BT (D − σI )−1vk

)
,

vk+1 = (D − σI )−1(vk − Fxk+1).
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Part I: Projection method on the reduced system

We now introduce a projection method that works in Cn, i.e., it requires
only vectors of the size of the original problem (1).

Let U = [u1, u2, . . . , uν ] be an orthonormal basis of subspace which
contains good approximations to eigenvectors of problem (1). Hence, an
approximate eigenvector x̃ can be expressed in this basis as x̃ = Us, with
s ∈ Cν . Then, a Rayleigh-Ritz procedure applied to (1) yields a
projected problem

UH
(
− B0 + λA0 +

nc∑
i=1

Bi

λ− σi

)
Us = 0. (16)

This leads to a nonlinear eigenvalue problem in Cν , namely:(
− B̂0 + λÂ0 +

nc∑
i=1

B̂i

λ− σi

)
s = 0, (17)

in which Â0 = UHA0U, and B̂i = UHBiU, for i = 0, 1, . . . , nc .



Draft

How to obtain a good subspace to perform the projection
method?

Suppose we wish to perform a single step of the subspace iteration
algorithm applied with shift-and-invert, we proceed as follows:

at a given iteration step we have a certain basis W = [w1,w2, . . . ,wν ]
of the current subspace,
we apply q steps of shifted inverse iteration to each column wj ,
and denote the k-th iterate by wk

j = [vkj ; xkj ],
after a column is processed by these q steps we discard its top part
and extract the U-part that will be used in the projection
process. This is done one column at a time, therefore we only have
to keep one vector of length (nc + 1)n,
doing this for each column of U in succession constitutes one step of
reduced subspace iteration.
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Numerical Experiments
Example 1: Hadeler problem

We consider the Hadeler problem [Hadeler 1967], [Ruhe 1973], [Betcke,
Higham, Mehrmann, Schröder, Tisseur 2013], [Higham, Porzio, Tisseur
2019]

T (λ) = (eλ − 1)B1 + λ2B2 − B0, (18)

with the coefficient matrices

B0 = b0I , B1 = (b
(1)
jk ), B2 = (b

(2)
jk ),

b
(1)
jk = (n + 1 −max(j , k))jk, b

(2)
jk = nδjk + 1/(j + k),

of size n = 200 and b0 = 100.
The eigenvalues of (18) are real, n negative and n positive.
The eigenvalues become better spaced as we move away from the
origin and the smallest one is close to −48.
Contour C is a circle centered at c = −30 with radius r = 11.5.
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Figure: Left: Eigenvalues of the expanded problem (plus) and by Beyn’s method
(circle). Right: The errors enc of the rational approximation of eλ − 1 (square) and λ2

(circle) versus the number of quadrature nodes nc .

We need nc = 32 to get rational approximations of f1(λ) = eλ − 1 and
f2(λ) = λ2 inside contour C up to the accuracy of 10−12.
Using nc = 32 Gauss-Legendre quadrature nodes, 12 eigenvalues of
(18) were computed using shift-and-invert Arnoldi applied to (12).
For Beyn’s method nc = 50 was required to reach a backward error of
the 12 eigenvalues smaller than 10−10.
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We repeat the same experiment using the reduced subspace iteration.
Start with ν = 40 random vectors and apply q = 10 steps of shifted
inverse iteration to obtain a block of ν vectors each of size n.
Orthogonalize the resulting ν vectors to obtain an orthonormal
basis U to perform the Rayleigh-Ritz projection.
We then solve reduced (nonlinear) eigenvalue problem (17) of
size (nc + 1)ν ≪ (nc + 1)n by solving an expanded problem.
Before each restart of reduced subspace iteration, select ν
approximate eigenpairs whose eigenvalues are inside the
contour C.
We compare these results with the AAA algorithm [Nakatsukasa, Sete,
Trefethen 2018] and the NLEIGS algorithm [Güttel, Van Beeumen,
Meerbergen, Michiels 2014].
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Figure: Left: Eigenvalues of (18) obtained by reduced subspace iteration (plus), the
AAA algorithm (circle) and the NLEIGS algorithm (cross). Right: The residual norm
∥T (λ)x∥∞ of the computed eigenpairs.

Reduced subspace iteration computes 12 eigenvalues of interest
requiring ℓ = 6 outer iterations.
For the AAA and NLEIGS algorithms, the boundary circle is
discretized by 100 equispaced points. 7 and 38 nodes are needed to
approximate T (λ) up to 10−12 inside the circle, respectively.
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Example 2: Acoustic behavior of pump casing model

Figure: Geometry and BE mesh of the pump casing model partitioned into 3 479 652
triangles, leading to the nonlinear eigenvalue problem with 1 728 508 DoFs.
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Figure: Left: 33 eigenvalues of the 3D Helmholtz problem on the pump model domain
with Robin boundary conditions computed via (12). Right: Approximation errors versus
the order nc of the approximation inside a unit circle.
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Eigenfrequency: 2.87 - 5.64i Hz

Eigenfrequency: 3.09 - 6.22i Hz

Eigenfrequency: 5.83 - 8.56i Hz

Eigenfrequency: -2.50 - 6.63i Hz

Figure: Eigenmodes of the pump model corresponding to four different
eigenvalues calculated up to the relative residuals ∥T (λ)u∥2

∥u∥2
≤ 10−9 .
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Few more details:
nc = 24 trapezoidal quadrature nodes,
assembling H-matrix compressed versions of 24 matrices Bi and
performing the matrix-vector multiplications with Bi (efficiently
parallelized on 32 cores with per-core memory limit of ≈ 31 GB) took
7.3 hours,
reduced subspace iteration was used to solve the same problem with
10 704 triangles, initial subspace size ν = 40, ℓ = 20 outer
iterations and q = 10 steps of inverse iteration method,
parallelism has been exploited for computing matrices Bi and B̂i ,
and to obtain an approximate subspace span{U}.
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Thank you very much for your attention.


