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Aims of this talk

Discuss iterative methods to solve large-scale inverse problems:

b=Ax+n

@ Introduction and Basics

© Standard Krylov Solvers

© Hybrid Krylov Solvers

@ Krylov Methods for Sparse Solutions
© Krylov Methods for Low-Rank Solutions

© Concluding Remarks
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MATLAB backslash operator is amazing!

The simple command x = A\ b can solve many different problems.
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Introduction and Basics

ob
o X
°n
o A

Backslash for b = Ax +n?

is known vector (measured data)

is unknown vector (want to find this)

is unknown vector (noise)

is large, ill-conditioned matrix, and generally

e large singular values < low frequency singular vectors

e small singular values <> high frequency singular vectors

ignore noise, and “solve” Ax=b = &=A\b=A"'b=x+A"'n #&x
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Backslash for b = Ax +n?

Computing approximate requires regularization.

If A is not too large, can use A = UXV7 (SVD), e.g.

k T
o Truncated SVD (TSVD): & = 3 % b

i=1

v;, n=rank(A), k<n

1

. N . 2 22 O of u/b
e Tikhonov: & = arg):nln b — Ax||5 + a*||x[3 E 1: m e Vi
-
. General SVD Fllterlng )IE _ n ¢ (a) uinv. ¢(a) - { 17 “for Iargen agj
’ Z i o ! 0, ‘“for small” o;

i=1

Good choice for regularization parameter o depends on problem.
With SVD, many methods to help guide choosing «, such as:
@ discrepancy principle

@ generalized cross validation
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Backslash for b = Ax +n?

Summary: When A is not too large, SVD based methods can be effective.

Good MATLAB software:
Regularization Tools, http://www.imm.dtu.dk/~pcha/Regutools/

[Hansen. Rank-Deficient and Discrete Ill-Posed Problems. SIAM,1997.]
[Hansen. Regularization Tools Version 4.0 for Matlab 7.3. Numerical Algorithms, 2007]
[Hansen. Discrete Inverse Problems: Insight and Algorithms. SIAM, 2010]
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http://www.imm.dtu.dk/~pcha/Regutools/

Backslash for b = Ax +n?

If A is large, then we need iterative methods, e.g.,
@ Truncated iterations using, e.g., CG, LSQR, GMRES, ...
e mimics truncated SVD
o Iterative methods to solve variational problems: mxin |b — Ax||3 + aR(x)

o Choose your favorite R, e.g., ||Lx||3, TV(x), |

o How to choose a?

x|

1y eee

One method does not fit all problems, all data.
No simple flowchart for choices like backslash!
But Krylov combined with SVD can help.
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Standard Krylov Solvers for Inverse Problems

Framework for Krylov Subspace (e.g., conjugate gradient) methods.
At iteration k:

@ Expand the Krylov subspace:
AV, = Uy Ty,

with T) € R(HDXK (tiny matrix), Vi and Uy orthonormal columns.

@ Solve a projected LS problem:

Yk = arg min ||dx — Txyl2
yERK

@ Approximation at iteration k: xx = Vyy.

Important remarks:
® Xx = argmin,cr(y,) b — Ax|l
@ X, mimics a TSVD solution
@ Stop iteration when solutions is “good enough”

[Hanke. Conjugate Gradient Type Methods for Ill-Posed Problems. CRC, 1995]
[Hansen. SIAM 1997, 2010]
[Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000]

[Gazzola, Novati, Russo. On Krylov projection methods and Tikhonov regularization. ETNA, 2015]
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Try it out in MATLAB ...

Silvia Gazzola Per Christian Hansen James Nagy
University of Bath, UK Tech. Univ. of Denmark | Emory University, USA
S.Gazzola@bath.ac.uk | pcha@dtu.dk jnagyQemory.edu

https://github.com/jnagyl/IRtools
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Let's try: [x, IterInfo]l = IRcgls(A, Db);
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Standard Krylov Solvers in IR Tools

How to determine good stopping iteration?
o If noise level, ||n]|2 is known, stop when ||b — Ax,||2 =~ [|7]|2

(called discrepancy principle)

options = IRset(’NoiseLevel’, 0.01);
[x, IterInfo] = IRcgls(A, b, options);
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[x, IterInfo] = IRcgls(A, b, options);
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Standard Krylov Solvers in IR Tools

How to determine good stopping iteration?

@ If noise level,

|n||2 is known, stop when ||b — Axk|l> =~ ||n]|2
(called discrepancy principle)

options = IRset(’NoiseLevel’, 0.01);
[x, IterInfo] = IRcgls(A, b, options);

@ Or, use simple Tikhonov regularization:
min b — Ax|[3 + o|x]3

Need to specify «, e.g.,
options = IRset(’RegParam’, 20);
[x, IterInfo] = IRcgls(A, b, options);
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[x, IterInfo] = IRcgls(A, b, options);
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Standard Krylov Solvers in IR Tools

Next question: | don't know the noise level, or a good initial «. What can | do?
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Hybrid Krylov Solvers for Inverse Problems

Krylov-based methods = at iteration k,

solve tiny projected problem: y, arg min ||dk — TkyHE
yERK

project back: X, = V iy
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Hybrid Krylov Solvers for Inverse Problems

Hybrid Krylov-based regularization methods = at iteration k,
solve tiny projected problem: y, , = arg min [dy — Tyl +aillyl3
: yeR

project back: Xoon = ka(,k,k
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Hybrid Krylov Solvers for Inverse Problems

Hybrid Krylov-based regularization methods = at iteration k,

solve tiny projected problem: Yoo = a8 mink ||dk - TkyH% + aiHyH%
’ yeER

project back: Xak K = kaak B

For tiny problem:
@ Use GCV (or discrepancy) to choose regularization parameter, c.

@ Compute information to determine stopping iteration, k.
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Golub-Kahan Bidiagonalization (GKB) Approaches

[O’Leary, Simmons. A bidiag.-reg. procedure for large scale discretizations of ill-posed problems. SISSC, 1981]
[Bjorck. A bidiag. alg. for solving sarge and sparse ill-posed systems of lin. eqs. BIT, 1988]

[Bjorck, Grimme, van Dooren. An implicit shift bidiag. alg. for ill-posed systems of lin. eqs. BIT, 1994)]
[Hanke. On Lanczos based methods for the reg. of discrete ill-posed problems. BIT, 2001]

[Chung, Nagy, O'Leary. A weighted GCV method for Lanczos hybrid regularization. ETNA, 2008]

[Chung. Numerical approaches for large-scale ill-posed inverse problems. PhD Thesis, Emory Univ., 2009]

@ IR Tools method IRhybrid_lsqr uses GKB to solve:
min b — Ax(3 + o3

@ Underlying Krylov subspace is used to:
o estimate regularization parameter o via
o generalized cross validation (default)
o discrepancy principle if noise level is provided
e determine stopping iteration
e Can use as:

[x, IterInfo]
[x, IterInfo]
[x, IterInfo]
[x, IterInfo]

IRhybrid 1sqr(A, b);
IRhybrid_-1sqr(A, b, K);
IRhybrid-1sqr(A, b, options);
IRhybrid 1sqr(A, b, K, options);
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[x, IterInfo] = IRhybrid 1sqr(A, b);
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Arnoldi-based Krylov Methods

Arnoldi-Tikhonov based methods are similar.

[Calvetti, Morigi, Reichel, Sgallari. Tik. reg. and the L-curve for large discrete ill-posed probs. JCAM, 2000]
[Lewis, Reichel. Arnoldi-Tikhonov regularization methods. JCAM, 2009]

[Reichel, Sgallari, Ye. Tik. reg. based on generalized Krylov subspace methods. Appl. Numer. Math., 2012]
[Gazzola, Novati. Automatic parameter setting for Arnoldi-Tikhonov methods. JCAM, 2014]

[Gazzola. Reg. Tech. Based on Krylov Subspace Methods for lll-Posed Lin. Syst. PhD Thesis, Padova, 2014]
[Gazzola, Novati, Russo. On Krylov projection methods and Tikhonov regularization. ETNA, 2015]

IR Tools basic implementations:

IRhybrid_gmres
IRhybrid_fgmres

Hybrid methods for general form regularization [Kilmer, Hansen, Espafiol. SISC, 2007]:

min b — Ax|3 + o2 L[}
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Krylov Methods for Sparse Solutions

Beyond the classical Krylov Methods and the 2-norm
Consider

min ||Ax — b|2 X
i 1A — b3 + allx]):.

and adopt an iteratively reweighted norm approach:
Let xo be an initial guess, then replace ||x||; with

lIx|[1 ~ [[Wkx||3, where W, = diag (1/m> .

lterate:  xx = arg miny |[Ax — b||3 + «||Wkx|)3
We can efficiently handle it by:

@ transforming into std form:

o = arg min [ AW, "%~ b} + alRI3. %o = Wixa.

@ iteration dependent “preconditioner” =- need flexible Krylov method
[Gazzola, Nagy. GAT for sparse reconstruction. SISC, 2014]
[Chung, Gazzola. Flexible Krylov methods for £, regularization. SISC, 2018]
[Gazzola, Nagy, Sabaté Landman. [ter. Reweighted FGMRES and FLSQR for Sparse Recon., SISC, to appear.]
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Beyond the classical Krylov Methods and the 2-norm

o = arg min [|Ax — b3 + allx|:

In IR Tools, use:

IRell1(4, Db);

IRell1(A, b, K);
IRell1(A, b, options);
IRell1(A, b, K, options);

[x, IterInfol
[x, IterInfol
[x, IterInfol
[x, IterInfol

Makes use of IRhybrid _fgmres
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[x, IterInfo] = IRelll(A, b);
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Krylov Methods for Low-Rank Solutions

Computing low-rank (LR) solutions

Here we want to consider the problem:

b=Ax+n
with the constraint that x has “low rank”, i.e.,
X=X1®Yy1 +X@Yy2+ - +X Y,

or equivalently

X =y1x] +yoxg +---+y,x], where x = vec(X)
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Computing low-rank (LR) solutions

Our first approach was motivated by:

[Kressner, Tobler. Low-rank tensor Krylov methods for parametrized systems. SIMAX, 2011]
[Stoll, Breiten. A low-rank in time approach for PDE-constrained optimization. SISC, 2015]
[Lee, Elman. A Preconditioned Low-Rank Projection Method for SDEs. SISC, 2017]

Basic idea:
@ Enforce low (Kronecker) rank of solution x

@ Use flexible Golub-Kahan [Chung, Gazzola. SISC, 2018] to generate:
AZk = Uk+1Mk and ATUk+1 = Vk+1Tk+1

where
@ Ukt1 and Vi1 contain orthonormal vectors
o Z, contain iteration dependent vectors
o My is upper Hessenberg, Ty is upper triangular
o Xk = Xo + ZiYk, Where y, = arg myin [Myy — Bred]|5 + Allyll2

@ Use truncation approach to restrict Kronecker ranks of:

e columns of Zj, and
e approximate solution xy
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Krylov Methods for Low-Rank Solutions

Alternative Approach: Nuclear Norm Regularization

Let vec7!(x) = X = UxEZxVy. Solve the NNR problem:
min [ Ax — bJ + Alvec ()., where vec=(x)].. = X7, o(X)
xe

Insight: “singular value sparsity”

Solve the NNRp problem:
min [ Ax — b[[3+X[vec ™ (x)]..,, where [[X]l., = 37 (0i(X))?, 0 < p <1
Insight: even more “singular value sparsity”

Solution techniques:
@ Projected Gradient Descent (singular value thresholding (SVT))
[Cai, Candeés, Shen. Singular value thresholding for matrix completion. SIOPT, 2010]

o lteratively Reweighted Norm (IRN) algorithms
[ Fornasier, Rauhut, Ward. LR matrix recovery via IRLS minimization. SIOPT, 2011]
[I\/Iohan, Fazel. [terative reweighted alg. for rank min.. J. Mach. Learn. Res., 2012]
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Low Rank and Krylov Solvers

at the kth iteration solve
=:Sy

_ : 2 N 2 p/4—1/2 T T 2
Xice1 = arg min [ Ax — b[3 + X (l ® (5%, + 1) ) (Vi @ UL ) x|3

=:(Wp )
Algorithm 1 IRN-NNRp
1: Inputs: A, b, (W;’)o =1 So=1
2: for k=0,1,... until a stopping criterion holds do
3 Solve problem the (k + 1)th linear problem
4: “Decrease” ~
5 Update (W;’)Hl and Sy 1
6: end for
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Low Rank and Krylov Solvers

Perform inner-outer iteration cycles; at the kth (outer) iteration solve
=:Sy

_ : 2 N 2 p/4—1/2 T T 2
Xice1 = arg min [ Ax — b[3 + X (l ® (5%, + 1) ) (Vi @ UL ) x|3

=:(Wp )«
Algorithm 1 IRN-NNRp
1: Inputs: A, b, (W;’)o =1 So=1
2: for k =0,1,... until a stopping criterion holds (outer iterations) do
3 Solve problem the (k + 1)th linear problem (inner iterations)
4: “Decrease” ~
5 Update (W;’)Hl and Sy 1
6: end for
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A summary of IRN-LSQR-NNRp and IRN-GMRES-NNRp

[Gazzola, Meng, Nagy. Krylov Methods for Low-Rank Regularization. SIMAX, 2020]

Final step: Transform to standard form, and use hybrid method:

min [[AS{(W);'% = b|3 + AlIx[3

Algorithm 2 IRN-LSQR-NNRp, IRN-GMRES-NNRp

1: Inputs: A, b, (Wg)o =1 Sy =1

2: for k =0,1,... until a stopping criterion is satisfied do

3 for m=1,2,... until a stopping criterion is satisfied do
4 update the relevant partial factorizations _
5 solve the relevant projected problems, tuning A,
6: end for
7

8

9

“Decrease” ~
Update the new (Wg)k+1 and Sy 1.
: end for
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A summary of FLSQR-NNRp and FGMRES-NNRp

[Gazzola, Meng, Nagy. Krylov Methods for Low-Rank Regularization. SIMAX, 2020]

Algorithm 3 FLSQR-NNRp and FGMRES-NNRp
1: Inputs: A, b, (W;’)o =15 =1

2. for i =1,2,... until a stopping criterion is satisfied do

3: update the relevant partial flexible factorizations

4 solve the relevant projected problems, tuning \; if necessary

5: “Decrease” ~

6 Update the new (W}); and S;, using X; = vec™'(x;) = Ux, Zx,Vx,
7: end for

Remark: With flexible Krylov subspace framework, can use alternative (W}); and
S, that are effective in producing low-rank solutions.
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Krylov Methods for Low-Rank Solutions

Example: Image deblurring and inpainting

exact corrupted LSQR

LR-FLSQR FLSQR-NNR(v) FLSQR-NNR IRN-LSQR-NNR

=
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Concluding Remarks

Concluding Remarks

Krylov methods can be powerful approaches for large-scale inverse problems

Allows to use adaptive guides to choosing regularization parameters.

Can encode regularization through iteration-dependent “preconditioning”.

IR Tools MATLAB Package

Implements many Krylov methods.
Includes many other well-known methods, some with box constraints.
Combines with AIR Tools Il for tomography examples and iterative methods
[Hansen, Jgrgensen. AIR Tools Il: algeb. iter. recon. methods, improved impl. Numer. Algor., 2018.]
Package can be used in many ways:

e Use our implementations to solve your problems.

o Experiment with different regularization approaches, constraints, etc.

o Use our test problems to evaluate your new algorithms.

o Compare your best/new algorithms with our implementations.
Get the paper, Numer Algor. (2018):  https://doi.org/10.1007/s11075-018-0570-7

Get the software from GitHub: https://github.com/jnagyl/IRtools
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