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Fixed-point iteration

Suppose

X is a complete normed vector (Banach) space

φ : X → X is Lipschitz continuous: ‖φ(x)−φ(y)‖ ≤ κ‖x− y‖
Fixed-point problem: Find x ∈ X such that φ(x) = x

Fixed-point iteration: Given x0 ∈ X , set xk+1 = φ(xk)

Error analysis
‖xk+1− x‖= ‖φ(xk)−φ(x)‖ ≤ κ‖xk− x‖

If κ < 1, there is a unique fixed-point x ∈ X , and xk→ x at linear rate κ

If κ� 1, great!

If κ < 1 but κ≈ 1, no so great!

If κ > 1, it’s not so clear, but it sometimes works

Goal: Improve efficiency and robustness of the iteration

Idea: Use a history of previous iterates to improve the approximation
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Anderson acceleration (D. G. Anderson, 1965)
Fixed-point iteration:

xk+1 = φ(xk) = xk +wk+1, wk+1 = φ(xk)− xk

(Anderson iteration with depth m) Set (maximal) depth m≥ 0
Choose x0
Compute w1 = φ(x0)− x0. Set x1 = x0 +w1
For k = 1,2,3, . . . Set mk ≤min{k,m}

-Compute wk+1 = φ(xk)− xk

-Solve: γk+1 = argmin
∥∥wk+1−Fkγk+1

∥∥
-Set damping (mixing) parameter βk (βk = 1 ⇔ no damping)

-Update xk+1 = xk +βkwk+1︸ ︷︷ ︸
f. p. update

− (Ekγ
k+1 +βkFkγ

k+1)︸ ︷︷ ︸
correctionwhere

Ek :=
(

ek ek−1 · · · ek−mk+1
)
, ek = xk− xk−1

Fk :=
(
(wk+1−wk) (wk−wk−1) · · · (wk−mk+2−wk−mk+1)

)
Ek,Fk each have mk columns
γk+1 is the vector of optimization coefficients
θk+1 is the gain from the optimization problem: ‖wk+1−Fkγk+1‖= θk+1‖wk+1‖
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Example: Anderson applied to Picard for steady NSE
Picard iteration for steady Navier-Stokes (moving lid problem)
ũk = φ(uk−1), wk = ũk−uk−1

Choose u0 ∈ Xh. For k ≥ 1: Find (ũk, p̃k) ∈ (Xh,Qh) s.t. for all (v,q) ∈ (Xh,Qh)

b∗(uk−1, ũk,v)− (p̃k,∇ · v)+ν(∇ũk,∇v) = ( f ,v)

(∇ · ũk,q) = 0

b∗(u,v,w) := (u ·∇v,w)+
1
2
((∇ ·u)v,w)

(Xh,Qh) = (P2,P1) Taylor-Hood elements, meshsize h = 1/256; 592,387 DOF.
(Continuous piecewise quadratic space for velocity, continuous piecewise linear space for
pressure on a triangular mesh)

Domain: Ω = (0,1)2; no forcing f = 0; kinematic velocity ν = 1/Re
‘Moving lid” u(x,1) = 〈1,0〉T , no-slip (zero-velocity) condition on other sides
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Example: Anderson applied to Newton for steady NSE

Choose u0 ∈ Xh
For k ≥ 1: Find (uk, pk) ∈ (Xh,Qh) satisfying for all (v,q) ∈ (Xh,Qh)

b∗(uk−1,uk,v)+b∗(uk,uk−1,v)−b∗(uk−1,uk−1,v)− (pk,∇ · v)+ν(∇uk,∇v) = ( f ,v)

(∇ ·uk,q) = 0
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Observe: (1) Anderson applied to Newton is superlinear but subquadratic, and (2) it is
doing “something similar” to damping outsde Newton’s domain of convergence.
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Some history
1965 The “Extrapolation Method,” introduced by Donald Anderson
1996 V. Eyert, 2009 H. Fang and Y. Saad: relation to Broyden and multisecant
families of updates
2011 H. Walker and P. Ni: results on electronic structure computations and study
of efficient and robust implementation
2015 A. Toth and C. T. Kelley: Local convergence theory for contractive operators

I Convergence of Anderson(m) assuming boundedness of the optimization coefficients
I An upper bound on the convergence rate of Anderson(1) without the boundedness

assumption. Asymptotically the converegence rate is no worse than that of the
underlying fixed-point iteration

2019 P., Rebholz, Xiao; 2020 Evans, P. Rebholz, Xiao, acceleration theory to
establish local improvement of the convergence rate for linearly converging
fixed-point iterations
2021 P. and Rebholz, replacement of the boundedness assumption on the
optimization coefficients by filtering strategy

The method (almost) is known as Pulay mixing in computational chemistry. The
literature has been quickly increasing...

Recent interests:
Adaptive parameter selection based on recent theory
Newton-specific theory
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Some questions

1 When should we use it?

2 How should we set the damping?

3 How should we set the depth mk?

4 Do the columns of the matrix Fk we use for the
least-squares problem get more linearly
dependent as iterations continue?

5 Can we improve the iteration by selecting
which previous steps to use?

Answer key: (2) dynamically; (3) dynamically;
(4) not necessarily; (5) Yes! Our acceleration theory leads to a filtering strategy

Extra credit: What does the picture have to do with filtering?
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One-step residual bound
Theorem (P., Rebholz, 2021 (Anderson acceleration for contractive and noncontracive

iterations, IMA J. Numer. Anal.))
Suppose some conditions that we are about to discuss. Then the residual
wk+1 = g(xk)− xk from depth m acceleration satisfies the following bound

‖wk+1‖ ≤ ‖wk‖

(
θk((1−βk−1)+κβk−1)+

C(σ,cs)κ̂
√

1−θ2
k

2

(
‖wk‖h(θk)

+2
k−1

∑
n=k−mk−1+1

(k−n)‖wn‖h(θn)+mk−1‖wk−mk−1‖h(θk−mk−1)

))

where each h(θ j)≤C
√

1−θ2
j +β j−1θ j, and C depends on cs (sufficient linear

independence of columns of each Fj)

For the fixed-point algorithm with the same damping factor βk−1

‖wk+1‖ ≤ ((1−βk−1)+κβk−1)‖wk‖
The first order term improves by factor θk

Higher-order terms are introduced, and they are scaled by factor
√

1−θ2
k
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First residual bound
We’ll assume the fixed-point operator φ is continuously Fréchet differentiable

Assumption

Assume φ ∈C1(X) has a fixed point x∗ in X , and there are positive constants κ and κ̂

with

(1) ‖φ′(x)‖ ≤ κ for all x ∈ X , and
(2) ‖φ′(x)−φ′(y)‖ ≤ κ̂‖x− y‖ for all x,y ∈ X

After some Taylor expansions and triangle inequalities... (e j = x j− x j−1)

‖wk+1‖ ≤ ‖wk−Fk−1γ
k‖((1−βk−1)+κβk−1)+

κ̂

2

k−1

∑
n=k−mk−1

(‖en+1‖+‖en‖)
k−1

∑
j=n
‖e jγ

k
j‖

= θk‖wk‖((1−βk−1)+κβk−1)+
κ̂

2

k−1

∑
n=k−mk−1

(‖en+1‖+‖en‖)
k−1

∑
j=n
‖e jγ

k
j‖

Compare: with damping factor βk−1 and no acceleration

‖wk+1‖ ≤ ‖wk‖((1−βk−1)+κβk−1)
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Optimization gain and coefficients: relating ek to wk

Update: xk+1 = xk +βkwk+1︸ ︷︷ ︸
f. p. update

− (Ekγ
k+1 +βkFkγ

k+1)︸ ︷︷ ︸
correction

, where

Ek :=
(

ek ek−1 · · · ek−mk+1
)
, ek = xk− xk−1

Fk :=
(

(wk+1−wk) (wk−wk−1) · · · (wk−mk+2−wk−mk+1)
)

γk+1 minimizes ‖Fkγ−wk+1‖

Suppose we’re in a finite dimensional Hilbert space

γk+1 = R−1
k QT

k wk+1, where Fk = QkRk is a thin QR decomposition

‖(I−QkQT
k )wk+1‖= ‖wk+1−Fkγk+1‖= θk‖wk‖

‖QT
k wk+1‖= ‖Fkγk+1‖=

√
1−θ2

k‖wk+1‖

θk+1 can be computed by
√

1− (‖QT
k wk+1‖/‖wk+1‖)2

xk+1− xk = EkR−1
k QT

k wk+1 +βk(I−QkQT
k )wk+1
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Bounding ‖e j‖ by ‖w j‖

To close the first residual bound

‖wk+1‖ ≤ θk‖wk‖((1−βk−1)+κβk−1)+
κ̂

2

k−1

∑
n=k−mk−1

(‖en+1‖+‖en‖)
k−1

∑
j=n
‖e jγ

k
j‖

require the ‖e j‖′s in terms of the ‖w j‖’s, where e j = x j− x j−1

From last slide

x j+1− x j = E jR−1
j QT

j w j+1 +β j(I−Q jQT
j )w j+1

‖e j+1‖ ≤
(√

1−θ2
j+1‖E jR−1

j ‖+θ j+1β j

)
‖w j+1‖

‖E jR−1
j ‖ ≤C under some conditions
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Conditions:

‖E jR−1
j ‖ ≤C =C(σ,cs) under the conditions:

1 There is a constant σ with ‖w j+1−w j‖ ≥ σ‖e j‖ is satisfied, for example, if either
I The Lipschitz constant κ of φ satisfies κ < 1

I The fixed-point operator is φ(x) = x+ f (x) (used to seek a zero of f ), and the
smallest singular value of f ′(x), the Jacobian of f at x, is bounded away from zero in
the vicinity of a solution

2 There is a constant cs > 0 with |sin( f j,i,span{ f j,1, . . . , f j,i−1})| ≥ cs, where f j,i
are the columns of Fj

I This is easily checked and enforcing it gives a novel and efficient filtering strategy!

I For F = QR, rii = ‖ fi‖sin( fi,span{ f1, . . . , fi−1}), so
|sin( fi,span{ f1, . . . , fi−1})|= rii/‖ fi‖

I The “sufficient linear independence” condition (or enforcement) replaces the common
assumption that the optimization coefficients are bounded

The next part looks a little fancy, but it just quantifies how much the columns of F not
being orthogonal messes things up, in terms of the constant cs
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A linear algebra lemma

Bounding ‖E jR−1
j ‖ by a constant requires one more result. It’s probably a known

result, but we couldn’t find it (we proved it by induction).

Lemma

Let Q̂R̂ be the economy QR decomposition of matrix F ∈ Rn×m, n≥ m, where F has
columns f1, . . . fm, Q̂ has orthonormal columns q1, . . .qm, and R̂ = (ri j) is an invertible
upper-triangular m×m matrix. Let R̂−1 = (si j) and F j = span{ f1, . . . f j}.
Suppose there is a constant 0 < cs ≤ 1 such that |sin( f j,F j−1)| ≥ cs, j = 2, . . . ,m,
which implies another constant 0≤ ct < 1 with |cos(a j,qi)| ≤ ct , j = 2, . . . ,m and
i = 1, . . . , j−1. Then it holds that

s11 =
1
‖ f1‖

, sii ≤
1
‖ fi‖cs

, i = 2, . . . ,m,

|s1 j| ≤
ct(ct + cs)

j−2

‖ f1‖c j−1
s

, and |si j| ≤
ct(ct + cs)

j−i−1

‖ fi‖c j−i+1
s

, for

i = 2, . . . ,m−1 and j = i+1, . . . ,m.
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Bounding ‖E jR−1
j ‖

Denote R̂ = R j and S = R̂−1

- Expanding, ‖E jR̂−1‖= ‖
(

e j ∑
m
n=1 s1n e j−1 ∑

m
n=2 s2n · · · e j−m+1smm

)
‖

- For column 1 apply the lemma, first condition, and finite geometric sum

‖e j

m

∑
n=1

s1n‖ ≤ ‖e j‖

∣∣∣∣∣ m

∑
n=1

s1n

∣∣∣∣∣≤ ‖e j‖
‖w j+1−w j‖

(
1+

m

∑
n=2

ct(ct + cs)
n−2

cn−1
s

)
≤ σ

−1
(

ct + cs

cs

)m−1

For columns p = 2, . . . ,m = mk

‖e j−p+1

m

∑
n=p

spn‖ ≤
1

σcs

(
1+

m

∑
n=p+1

(ct + cs)
n−(p+1)

cn−p
s

)
≤ 1

σcs

(
ct + cs

cs

)m−p

For (cs,ct) 6= (1,0), adding all the contributions bounds ‖E jR̂−1‖ by

σ
−1
(
(ct + cs)

m−1(ct +1)− cm−1
s

cm−1
s ct

)
= σ

−1

(
1+

(1+ ct)∑
m−1
j=1

(m−1
j

)
c j−1

t cm− j−1
s

cm−1
s

)

- There is no ct in the denominator
- For (cs,ct) = (1,0) the bound is m/σ
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One-step residual bound
Theorem (P., Rebholz, 2021 (Anderson acceleration for contractive and noncontracive

iterations, IMA J. Numer. Anal.))
Suppose the conditions above hold. Then the residual wk+1 = g(xk)− xk from depth m
acceleration satisfies the following bound

‖wk+1‖ ≤ ‖wk‖

(
θk((1−βk−1)+κβk−1)+

C(σ,cs)κ̂
√

1−θ2
k

2

(
‖wk‖h(θk)

+2
k−1

∑
n=k−mk−1+1

(k−n)‖wn‖h(θn)+mk−1‖wk−mk−1‖h(θk−mk−1)

))

where each h(θ j)≤C
√

1−θ2
j +β j−1θ j, and C depends on cs (sufficient linear

independence of columns of each Fj)

For the fixed-point algorithm with the same damping factor βk−1

‖wk+1‖ ≤ ((1−βk−1)+κβk−1)‖wk‖
The first order term improves by factor θk

Higher-order terms are introduced, and they are scaled by factor
√

1−θ2
k
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How do we use this in practice

I want and I should
First order term smaller residual is large Choose βk based on θk
First order term smaller residual is small Choose depth mk larger
Higher-order terms smaller depth mk > 1 Filter columns of Fk to enforce

sufficient LI

Strategies:

Dynamic choice of damping βk, based on θk
(
(1−βk−1)+κβk−1

)
≤ (1+θk)/2

Dynamic choice of depth mk: based on log10‖wk‖ or based on a single switch
from a small to a larger depth

Filtering: discard columns of Fk for which |rii|/‖ fi‖< c

Filtering Multiple depths Relaxation Relaxation & multiple depths
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Example: p-Laplacian
Picard iteration for the p-Laplacian: −div

(
(|∇u|2/2)(p−2)/2∇u

)
= c

p > 2: degenerate elliptic equation. Nonlinear diffusion coefficient→ 0 as |∇u| → 0

1 < p < 2: singular elliptic equation. Nonlinear diffusion coefficient→ ∞ as |∇u| → 0

Choose u0 ∈Vh. For k ≥ 1: Find uk ∈Vh satisfying for all v ∈Vh∫
Ω

(
ε

2 + |∇uk−1|2/2
)(p−2)/2

∇uk ·∇v dx =
∫

Ω

cv dx

ε≥ 0 is the regularization, ε > 0 for 1 < p < 2

Vh : space of piecewise linear functions over a uniform left-crossed triangulation of
Ω = (0,2)× (0,2). Initial iterate: u0 = (x−1)(y−1)(x−2)(y−2)xy

u0 p > 2 1 < p < 2
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Filtering for the p-Laplacian, 1 < p < 2

−div
(
(ε2 + |∇u|2/2)(p−2)/2∇u

)
= c, p = 1.06, c = π, ε = 10−14

Vh : space of piecewise linear functions over a 128×128 uniform left-crossed
triangulation of Ω = (0,2)× (0,2) with 16,641 total degrees of freedom
SG denotes “safeguarded,” columns of Fk for which rii/‖ fi‖< 0.25 are removed.

Left: Residual histories to tolerance ‖wk‖ ≤ 10−10 for constant depth with and without
filtering

Right: The number of columns in Fk selected for use in each filtered iteration
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Filtering can make a big difference, particularly in the early stages
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Filtering and dynamic depth selection
−div

(
(ε2 + |∇u|2/2)(p−2)/2∇u

)
= c, p = 1.06, c = π, ε = 10−14

Vh : space of piecewise linear functions over a 128×128 uniform left-crossed
triangulation of Ω = (0,2)× (0,2) with 16,641 total degrees of freedom
SG denotes “safeguarded,” columns of Fk for which rii/‖ fi‖< 0.25 are removed.
ψn,N denotes min

{
max{n,d− log10‖wk‖e},N

}
Left: Residual histories to tolerance ‖wk‖ ≤ 10−10 for constant and dynamic depths
with and without filtering

Right: The number of columns in Fk selected for use in each filtered iteration
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Filtering is useful for constant depths; dynamic depth selection is another way to
effectively handle the early stages
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Filtering: Which columns of Fk are used?
−div

(
(ε2 + |∇u|2/2)(p−2)/2∇u

)
= c, p = 1.06, c = π, ε = 10−14

Results shown for m = 8. The columns to the left (more recent) are more often dropped!
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Filtering and dynamic depth selection
−div

(
(ε2 + |∇u|2/2)(p−2)/2∇u

)
= c, p = 1.06, c = π, ε = 10−14

Vh : space of piecewise quadratic functions over a 128×128 uniform left-crossed
triangulation of Ω = (0,2)× (0,2) with 66,049 total degrees of freedom
SG denotes “safeguarded,” columns of Fk for which rii/‖ fi‖< 0.45 are removed.
ψn,N denotes min

{
max{n,d− log10‖wk‖e},N

}
Left: Residual histories to tolerance ‖wk‖ ≤ 10−10 for constant depth with and without
filtering

Right: Residual histories to tolerance ‖wk‖ ≤ 10−10 for dynamic depth with and
without filtering

Dynamic depth selection is in this case more efficient for higher order elements
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Filtering: Which columns of Fk are used?
−div

(
(ε2 + |∇u|2/2)(p−2)/2∇u

)
= c, p = 1.06, c = π, ε = 10−14

Results shown for m = 8. The columns to the left (more recent) are more often dropped!
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Filtering, adaptive damping and dynamic depth selection
−div

(
(ε2 + |∇u|2/2)(p−2)/2∇u

)
= c, p = 6.0, c = π, ε = 0

Vh : space of piecewise linear functions over a 128×128 uniform left-crossed
triangulation of Ω = (0,2)× (0,2) with 16,641 total degrees of freedom
SG(s): columns of Fk for which rii/‖ fi‖< s ∈ {0.5,0.6,0.7} are removed.
ψn,N denotes min

{
max{n,d− log10‖wk‖e},N

}
Residual histories to tolerance for constant and dynamic depths with and without
filtering and adaptive damping Left: maximum depth 4. Right: maximum depth 8.

Adaptive damping (AD): κ j = ‖w j+1−w j‖/‖uk−uk−1‖. β j chosen between
βmin = 0.1 and βmax = 0.6 so that ((1−β j)+κ jβ j)θ j+1 < (1+θ j+1)/2

Only sufficiently filtered iterations converged; adaptive damping improved convergence
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A note to FEniCS users

There exist wrong ways to interface between FEniCS and SciPy’s QR routines

But there are also ways that work well!

...

...
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Conclusions and Outlook

The new theoretical understanding guides the design of methods with adaptively
updated filtering, algorithmic depth, and damping, to stabilize and accelerate
convergence

If Newton is working, then use it! If Newton is diverging, or it is “undesirable” to
form a Jacobian, then applying AA to a linearly converging method can give
Newton-like performance at low cost, if it is implemented well.

Recent work includes application to non-Newtonian flows including Bingham
fluids (with L. Rebholz, D. Vargun) and grade-two fluids (with L. R. Scott)

In process: Can we put all these ideas together to create a robust globalization
strategy?

Pictured: we’re working on it...
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Example: Anderson applied to Picard for steady NSE (3D)
Picard iteration for steady Navier-Stokes (moving lid problem)

Choose u0 ∈ Xh. For k ≥ 1: Find (uk, pk) ∈ (Xh,Qh) s.t. for all (v,q) ∈ (Xh,Qh)

b∗(uk−1,uk,v)− (pk,∇ · v)+ν(∇uk,∇v) = ( f ,v)

(∇ ·uk,q) = 0

b∗(u,v,w) := (u ·∇v,w)+
1
2
((∇ ·u)v,w)

(Xh,Qh) = (P3,P disc
2 ) Scott-Vogelius elements, barycenter-refined tetrahedral mesh,

∼ 1.3 million DOF.

Domain: Ω = (0,1)3; no forcing f = 0; kinematic velocity ν = 1/Re

‘Moving lid” u(x,y,1) = 〈1,0,0〉T , no-slip (zero-velocity) condition on other sides

Re = 2500

0 50 100 150 200 250 300 350 400 450 500
k

10-10

10-5

100

|| 
g(

u k) -
 u

k|| 1

AAPicard(20)
AAPicard(50)
AAPicard(100)
AAPicard(150)
AAPicard(k-1)
AAPicard(k-1)/Newt(tol=0.1)
AAPicard(k-1)/Newt(tol=0.01)
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