Filtered Anderson acceleration for nonlinear PDEs

Sara Pollock
UF
Department of Mathematics

Joint work with:
Leo Rebholz (Clemson University),

47th Annual Spring Lecture Series University of Arkansas

May 4-6, 2022

Research group @ UF

Anderson acceleration theory
Extrapolation for eigenvalue problems

Students

Matt Dallas

Simon Kato

Funding
NSF DMS-\{1852876, 2011519\}
NSF DMS-2045059(CAREER)

Outline

- Intro and algorithm
- Some questions
- Some theory
- Using theoretical advances to improve performance
- Examples

Fixed-point iteration

Suppose

- X is a complete normed vector (Banach) space
- $\phi: X \rightarrow X$ is Lipschitz continuous: $\|\phi(x)-\phi(y)\| \leq \kappa\|x-y\|$

Fixed-point problem: Find $x \in X$ such that $\phi(x)=x$
Fixed-point iteration: Given $x_{0} \in X$, set $x_{k+1}=\phi\left(x_{k}\right)$
Error analysis

$$
\left\|x_{k+1}-x\right\|=\left\|\phi\left(x_{k}\right)-\phi(x)\right\| \leq \kappa\left\|x_{k}-x\right\|
$$

If $\kappa<1$, there is a unique fixed-point $x \in X$, and $x_{k} \rightarrow x$ at linear rate κ

- If $\kappa \ll 1$, great!
- If $\kappa<1$ but $\kappa \approx 1$, no so great!
- If $\kappa>1$, it's not so clear, but it sometimes works
- Goal: Improve efficiency and robustness of the iteration
- Idea: Use a history of previous iterates to improve the approximation

Anderson acceleration (D. G. Anderson, 1965)

Fixed-point iteration:

$$
x_{k+1}=\phi\left(x_{k}\right)=x_{k}+w_{k+1}, \quad w_{k+1}=\phi\left(x_{k}\right)-x_{k}
$$

(Anderson iteration with depth m) Set (maximal) depth $m \geq 0$
Choose x_{0}
Compute $w_{1}=\phi\left(x_{0}\right)-x_{0}$. Set $x_{1}=x_{0}+w_{1}$
For $k=1,2,3, \ldots$ Set $m_{k} \leq \min \{k, m\}$
-Compute $w_{k+1}=\phi\left(x_{k}\right)-x_{k}$
-Solve: $\gamma^{k+1}=\operatorname{argmin}\left\|w_{k+1}-F_{k} \gamma^{k+1}\right\|$
-Set damping (mixing) parameter $\beta_{k} \quad\left(\beta_{k}=1 \Leftrightarrow\right.$ no damping)
-Update $x_{k+1}=\underbrace{x_{k}+\beta_{k} w_{k+1}}_{\text {f. p. update }}-\underbrace{\left(E_{k} \gamma^{k+1}+\beta_{k} F_{k} \gamma^{k+1}\right)}_{\text {correction }}$
where

$$
\begin{aligned}
& E_{k}:=\left(\begin{array}{llll}
e_{k} & e_{k-1} & \cdots & e_{k-m_{k}+1}
\end{array}\right), \quad e_{k}=x_{k}-x_{k-1} \\
& F_{k}:=\left(\begin{array}{lllll}
\left(w_{k+1}-w_{k}\right) & \left(w_{k}-w_{k-1}\right) & \cdots & \left(w_{k-m_{k}+2}-w_{k-m_{k}+1}\right)
\end{array}\right)
\end{aligned}
$$

- E_{k}, F_{k} each have m_{k} columns
- γ^{k+1} is the vector of optimization coefficients
- θ_{k+1} is the gain from the optimization problem: $\left\|w_{k+1}-F_{k} \gamma^{k+1}\right\|=\theta_{k+1}\left\|w_{k+1}\right\|$

Example: Anderson applied to Picard for steady NSE

Picard iteration for steady Navier-Stokes (moving lid problem)

$$
\tilde{u}_{k}=\phi\left(u_{k-1}\right), \quad w_{k}=\tilde{u}_{k}-u_{k-1}
$$

- Choose $u_{0} \in X_{h}$. For $k \geq 1$: Find $\left(\tilde{u}_{k}, \tilde{p}_{k}\right) \in\left(X_{h}, Q_{h}\right)$ s.t. for all $(v, q) \in\left(X_{h}, Q_{h}\right)$

$$
\begin{aligned}
b^{*}\left(u_{k-1}, \tilde{u}_{k}, v\right)-\left(\tilde{p}_{k}, \nabla \cdot v\right)+v\left(\nabla \tilde{u}_{k}, \nabla v\right) & =(f, v) \\
\left(\nabla \cdot \tilde{u}_{k}, q\right) & =0 \\
b^{*}(u, v, w):=(u \cdot \nabla v, w)+\frac{1}{2}((\nabla \cdot u) v, w) &
\end{aligned}
$$

- $\left(X_{h}, Q_{h}\right)=\left(\mathcal{P}_{2}, \mathcal{P}_{1}\right)$ Taylor-Hood elements, meshsize $h=1 / 256 ; 592,387$ DOF. (Continuous piecewise quadratic space for velocity, continuous piecewise linear space for pressure on a triangular mesh)
- Domain: $\Omega=(0,1)^{2}$; no forcing $f=0$; kinematic velocity $\mathrm{v}=1 / \operatorname{Re}$
- 'Moving lid' $u(x, 1)=\langle 1,0\rangle^{T}$, no-slip (zero-velocity) condition on other sides

Example: Anderson applied to Newton for steady NSE

Choose $u_{0} \in X_{h}$
For $k \geq 1$: Find $\left(u_{k}, p_{k}\right) \in\left(X_{h}, Q_{h}\right)$ satisfying for all $(v, q) \in\left(X_{h}, Q_{h}\right)$

$$
\begin{aligned}
b^{*}\left(u_{k-1}, u_{k}, v\right)+b^{*}\left(u_{k}, u_{k-1}, v\right)-b^{*}\left(u_{k-1}, u_{k-1}, v\right)-\left(p_{k}, \nabla \cdot v\right)+v\left(\nabla u_{k}, \nabla v\right) & =(f, v) \\
\left(\nabla \cdot u_{k}, q\right) & =0
\end{aligned}
$$

Observe: (1) Anderson applied to Newton is superlinear but subquadratic, and (2) it is doing "something similar" to damping outsde Newton's domain of convergence.

Some history

- 1965 The "Extrapolation Method," introduced by Donald Anderson
- 1996 V. Eyert, 2009 H. Fang and Y. Saad: relation to Broyden and multisecant families of updates
- 2011 H . Walker and P. Ni: results on electronic structure computations and study of efficient and robust implementation
- 2015 A. Toth and C. T. Kelley: Local convergence theory for contractive operators
- Convergence of Anderson(m) assuming boundedness of the optimization coefficients
- An upper bound on the convergence rate of Anderson(1) without the boundedness assumption. Asymptotically the converegence rate is no worse than that of the underlying fixed-point iteration
- 2019 P., Rebholz, Xiao; 2020 Evans, P. Rebholz, Xiao, acceleration theory to establish local improvement of the convergence rate for linearly converging fixed-point iterations
- 2021 P. and Rebholz, replacement of the boundedness assumption on the optimization coefficients by filtering strategy
The method (almost) is known as Pulay mixing in computational chemistry. The literature has been quickly increasing...

Recent interests:

- Adaptive parameter selection based on recent theory
- Newton-specific theory

Some questions

- When should we use it?
(2) How should we set the damping?
(How should we set the depth m_{k} ?
- Do the columns of the matrix F_{k} we use for the least-squares problem get more linearly dependent as iterations continue?
(0) Can we improve the iteration by selecting which previous steps to use?

Answer key: (2) dynamically; (3) dynamically;

(4) not necessarily; (5) Yes! Our acceleration theory leads to a filtering strategy

Extra credit: What does the picture have to do with filtering?

One-step residual bound

Theorem (P., Rebholz, 2021 (Anderson acceleration for contractive and noncontracive

 iterations, IMA J. Numer. Anal.))Suppose some conditions that we are about to discuss. Then the residual $w_{k+1}=g\left(x_{k}\right)-x_{k}$ from depth m acceleration satisfies the following bound

$$
\begin{aligned}
\left\|w_{k+1}\right\| & \leq\left\|w_{k}\right\|\left(\theta_{k}\left(\left(1-\beta_{k-1}\right)+\kappa \beta_{k-1}\right)+\frac{C\left(\sigma, c_{s}\right) \hat{\kappa} \sqrt{1-\theta_{k}^{2}}}{2}\left(\left\|w_{k}\right\| h\left(\theta_{k}\right)\right.\right. \\
& \left.\left.+2 \sum_{n=k-m_{k-1}+1}^{k-1}(k-n)\left\|w_{n}\right\| h\left(\theta_{n}\right)+m_{k-1}\left\|w_{k-m_{k-1}}\right\| h\left(\theta_{k-m_{k-1}}\right)\right)\right)
\end{aligned}
$$

where each $h\left(\theta_{j}\right) \leq C \sqrt{1-\theta_{j}^{2}}+\beta_{j-1} \theta_{j}$, and C depends on c_{s} (sufficient linear independence of columns of each F_{j})

For the fixed-point algorithm with the same damping factor β_{k-1}

$$
\left\|w_{k+1}\right\| \leq\left(\left(1-\beta_{k-1}\right)+\kappa \beta_{k-1}\right)\left\|w_{k}\right\|
$$

The first order term improves by factor θ_{k}
Higher-order terms are introduced, and they are scaled by factor $\sqrt{1-\theta_{k}^{2}}$

First residual bound

We'll assume the fixed-point operator ϕ is continuously Fréchet differentiable

Assumption

Assume $\phi \in C^{1}(X)$ has a fixed point x^{*} in X, and there are positive constants κ and $\hat{\kappa}$ with
(1) $\left\|\phi^{\prime}(x)\right\| \leq \kappa$ for all $x \in X$, and
(2) $\left\|\phi^{\prime}(x)-\phi^{\prime}(y)\right\| \leq \hat{\kappa}\|x-y\|$ for all $x, y \in X$

After some Taylor expansions and triangle inequalities...

$$
\left(e_{j}=x_{j}-x_{j-1}\right)
$$

$$
\left\|w_{k+1}\right\| \leq\left\|w_{k}-F_{k-1} \gamma^{k}\right\|\left(\left(1-\beta_{k-1}\right)+\kappa \beta_{k-1}\right)+\frac{\kappa}{2} \sum_{n=k-m_{k-1}}^{k-1}\left(\left\|e_{n+1}\right\|+\left\|e_{n}\right\|\right) \sum_{j=n}^{k-1}\left\|e_{j} \gamma_{j}^{k}\right\|
$$

$$
=\theta_{k}\left\|w_{k}\right\|\left(\left(1-\beta_{k-1}\right)+\kappa \beta_{k-1}\right)+\frac{\hat{\kappa}}{2} \sum_{n=k-m_{k-1}}^{k-1}\left(\left\|e_{n+1}\right\|+\left\|e_{n}\right\|\right) \sum_{j=n}^{k-1}\left\|e_{j} \gamma_{j}^{k}\right\|
$$

Compare: with damping factor β_{k-1} and no acceleration

$$
\left\|w_{k+1}\right\| \leq\left\|w_{k}\right\|\left(\left(1-\beta_{k-1}\right)+\kappa \beta_{k-1}\right)
$$

Optimization gain and coefficients: relating e_{k} to w_{k}

- Update: $x_{k+1}=\underbrace{x_{k}+\beta_{k} w_{k+1}}_{\text {f. p. update }}-\underbrace{\left(E_{k} \gamma^{k+1}+\beta_{k} F_{k} \gamma^{k+1}\right)}_{\text {correction }}$, where

$$
\begin{aligned}
& E_{k}:=\left(\begin{array}{llll}
e_{k} & e_{k-1} & \cdots & e_{k-m_{k}+1}
\end{array}\right), \quad e_{k}=x_{k}-x_{k-1} \\
& F_{k}:=\left(\begin{array}{lllll}
\left(w_{k+1}-w_{k}\right) & \left(w_{k}-w_{k-1}\right) & \cdots & \left(w_{k-m_{k}+2}-w_{k-m_{k}+1}\right)
\end{array}\right)
\end{aligned}
$$

- γ^{k+1} minimizes $\left\|F_{k} \gamma-w_{k+1}\right\|$

Suppose we're in a finite dimensional Hilbert space

- $\gamma^{k+1}=R_{k}^{-1} Q_{k}^{T} w_{k+1}$, where $F_{k}=Q_{k} R_{k}$ is a thin QR decomposition
- $\left\|\left(I-Q_{k} Q_{k}^{T}\right) w_{k+1}\right\|=\left\|w_{k+1}-F_{k} \gamma^{k+1}\right\|=\theta_{k}\left\|w_{k}\right\|$
- $\left\|Q_{k}^{T} w_{k+1}\right\|=\left\|F_{k} \gamma^{k+1}\right\|=\sqrt{1-\theta_{k}^{2}}\left\|w_{k+1}\right\|$
- θ_{k+1} can be computed by $\sqrt{1-\left(\left\|Q_{k}^{T} w_{k+1}\right\| /\left\|w_{k+1}\right\|\right)^{2}}$
- $x_{k+1}-x_{k}=E_{k} R_{k}^{-1} Q_{k}^{T} w_{k+1}+\beta_{k}\left(I-Q_{k} Q_{k}^{T}\right) w_{k+1}$

Bounding $\left\|e_{j}\right\|$ by $\left\|w_{j}\right\|$

- To close the first residual bound

$$
\left\|w_{k+1}\right\| \leq \theta_{k}\left\|w_{k}\right\|\left(\left(1-\beta_{k-1}\right)+\kappa \beta_{k-1}\right)+\frac{\hat{\kappa}}{2} \sum_{n=k-m_{k-1}}^{k-1}\left(\left\|e_{n+1}\right\|+\left\|e_{n}\right\|\right) \sum_{j=n}^{k-1}\left\|e_{j} \gamma_{j}^{k}\right\|
$$

require the $\left\|e_{j}\right\|^{\prime} s$ in terms of the $\left\|w_{j}\right\|$'s, where $e_{j}=x_{j}-x_{j-1}$

- From last slide

$$
\begin{aligned}
x_{j+1}-x_{j} & =E_{j} R_{j}^{-1} Q_{j}^{T} w_{j+1}+\beta_{j}\left(I-Q_{j} Q_{j}^{T}\right) w_{j+1} \\
\left\|e_{j+1}\right\| & \leq\left(\sqrt{1-\theta_{j+1}^{2}}\left\|E_{j} R_{j}^{-1}\right\|+\theta_{j+1} \beta_{j}\right)\left\|w_{j+1}\right\|
\end{aligned}
$$

- $\left\|E_{j} R_{j}^{-1}\right\| \leq C$ under some conditions

Conditions:

$\left\|E_{j} R_{j}^{-1}\right\| \leq C=C\left(\sigma, c_{s}\right)$ under the conditions:
(- There is a constant σ with $\left\|w_{j+1}-w_{j}\right\| \geq \sigma\left\|e_{j}\right\|$ is satisfied, for example, if either

- The Lipschitz constant κ of ϕ satisfies $\kappa<1$
- The fixed-point operator is $\phi(x)=x+f(x)$ (used to seek a zero of f), and the smallest singular value of $f^{\prime}(x)$, the Jacobian of f at x, is bounded away from zero in the vicinity of a solution
(2) There is a constant $c_{s}>0$ with $\mid \sin \left(f_{j, i}\right.$, span $\left.\left\{f_{j, 1}, \ldots, f_{j, i-1}\right\}\right) \mid \geq c_{s}$, where $f_{j, i}$ are the columns of F_{j}
- This is easily checked and enforcing it gives a novel and efficient filtering strategy!
- For $F=Q R, r_{i i}=\left\|f_{i}\right\| \sin \left(f_{i}\right.$, span $\left.\left\{f_{1}, \ldots, f_{i-1}\right\}\right)$, so $\left|\sin \left(f_{i}, \operatorname{span}\left\{f_{1}, \ldots, f_{i-1}\right\}\right)\right|=r_{i i} /\left\|f_{i}\right\|$
- The "sufficient linear independence" condition (or enforcement) replaces the common assumption that the optimization coefficients are bounded
The next part looks a little fancy, but it just quantifies how much the columns of F not being orthogonal messes things up, in terms of the constant c_{s}

A linear algebra lemma

Bounding $\left\|E_{j} R_{j}^{-1}\right\|$ by a constant requires one more result. It's probably a known result, but we couldn't find it (we proved it by induction).

Lemma

Let $\hat{Q} \hat{R}$ be the economy $Q R$ decomposition of matrix $F \in \mathbb{R}^{n \times m}, n \geq m$, where F has columns $f_{1}, \ldots f_{m}, \hat{Q}$ has orthonormal columns $q_{1}, \ldots q_{m}$, and $\hat{R}=\left(r_{i j}\right)$ is an invertible upper-triangular $m \times m$ matrix. Let $\hat{R}^{-1}=\left(s_{i j}\right)$ and $\mathcal{F}_{j}=\operatorname{span}\left\{f_{1}, \ldots f_{j}\right\}$.
Suppose there is a constant $0<c_{s} \leq 1$ such that $\left|\sin \left(f_{j}, \mathcal{F}_{j-1}\right)\right| \geq c_{s}, j=2, \ldots, m$, which implies another constant $0 \leq c_{t}<1$ with $\left|\cos \left(a_{j}, q_{i}\right)\right| \leq c_{t}, j=2, \ldots, m$ and $i=1, \ldots, j-1$. Then it holds that

$$
\begin{array}{cc}
s_{11}=\frac{1}{\left\|f_{1}\right\|}, & s_{i i} \leq \frac{1}{\left\|f_{i}\right\| c_{s}}, i=2, \ldots, m, \\
\left|s_{1 j}\right| \leq \frac{c_{t}\left(c_{t}+c_{s}\right)^{j-2}}{\left\|f_{1}\right\| c_{s}^{j-1}}, \text { and } & \left|s_{i j}\right| \leq \frac{c_{t}\left(c_{t}+c_{s}\right)^{j-i-1}}{\left\|f_{i}\right\| c_{s}^{j-i+1}}, \text { for } \\
i=2, \ldots, m-1 \text { and } j=i+1, \ldots, m . &
\end{array}
$$

Bounding $\| E_{j} R_{j}^{-}$

Denote $\widehat{R}=R_{j}$ and $S=\widehat{R}^{-1}$

- Expanding, $\left\|E_{j} \hat{R}^{-1}\right\|=\left\|\left(\begin{array}{llll}e_{j} \sum_{n=1}^{m} s_{1 n} & e_{j-1} \sum_{n=2}^{m} s_{2 n} & \cdots & e_{j-m+1} s_{m m}\end{array}\right)\right\|$
- For column 1 apply the lemma, first condition, and finite geometric sum

$$
\left\|e_{j} \sum_{n=1}^{m} s_{1 n}\right\| \leq\left\|e_{j}\right\|\left|\sum_{n=1}^{m} s_{1 n}\right| \leq \frac{\left\|e_{j}\right\|}{\left\|w_{j+1}-w_{j}\right\|}\left(1+\sum_{n=2}^{m} \frac{c_{t}\left(c_{t}+c_{s}\right)^{n-2}}{c_{s}^{n-1}}\right) \leq \sigma^{-1}\left(\frac{c_{t}+c_{s}}{c_{s}}\right)^{m-1}
$$

For columns $p=2, \ldots, m=m_{k}$

$$
\left\|e_{j-p+1} \sum_{n=p}^{m} s_{p n}\right\| \leq \frac{1}{\sigma c_{s}}\left(1+\sum_{n=p+1}^{m} \frac{\left(c_{t}+c_{s}\right)^{n-(p+1)}}{c_{s}^{n-p}}\right) \leq \frac{1}{\sigma c_{s}}\left(\frac{c_{t}+c_{s}}{c_{s}}\right)^{m-p}
$$

For $\left(c_{s}, c_{t}\right) \neq(1,0)$, adding all the contributions bounds $\left\|E_{j} \hat{R}^{-1}\right\|$ by

$$
\sigma^{-1}\left(\frac{\left(c_{t}+c_{s}\right)^{m-1}\left(c_{t}+1\right)-c_{s}^{m-1}}{c_{s}^{m-1} c_{t}}\right)=\sigma^{-1}\left(1+\frac{\left(1+c_{t}\right) \sum_{j=1}^{m-1}\binom{m-1}{j} c_{t}^{j-1} c_{s}^{m-j-1}}{c_{s}^{m-1}}\right)
$$

- There is no c_{t} in the denominator
- For $\left(c_{s}, c_{t}\right)=(1,0)$ the bound is m / σ

One-step residual bound

Theorem (P., Rebholz, 2021 (Anderson acceleration for contractive and noncontracive iterations, IMA J. Numer. Anal.))
Suppose the conditions above hold. Then the residual $w_{k+1}=g\left(x_{k}\right)-x_{k}$ from depth m acceleration satisfies the following bound

$$
\begin{aligned}
\left\|w_{k+1}\right\| & \leq\left\|w_{k}\right\|\left(\theta_{k}\left(\left(1-\beta_{k-1}\right)+\kappa \beta_{k-1}\right)+\frac{C\left(\sigma, c_{s}\right) \hat{\kappa} \sqrt{1-\theta_{k}^{2}}}{2}\left(\left\|w_{k}\right\| h\left(\theta_{k}\right)\right.\right. \\
& \left.\left.+2 \sum_{n=k-m_{k-1}+1}^{k-1}(k-n)\left\|w_{n}\right\| h\left(\theta_{n}\right)+m_{k-1}\left\|w_{k-m_{k-1}}\right\| h\left(\theta_{k-m_{k-1}}\right)\right)\right)
\end{aligned}
$$

where each $h\left(\theta_{j}\right) \leq C \sqrt{1-\theta_{j}^{2}}+\beta_{j-1} \theta_{j}$, and C depends on c_{s} (sufficient linear independence of columns of each F_{j})

For the fixed-point algorithm with the same damping factor β_{k-1}

$$
\left\|w_{k+1}\right\| \leq\left(\left(1-\beta_{k-1}\right)+\kappa \beta_{k-1}\right)\left\|w_{k}\right\|
$$

The first order term improves by factor θ_{k} Higher-order terms are introduced, and they are scaled by factor $1-\theta_{k}^{2}$

How do we use this in practice

I want	and	I should
First order term smaller	residual is large	Choose β_{k} based on θ_{k}
First order term smaller	residual is small	Choose depth m_{k} larger
Higher-order terms smaller	depth $m_{k}>1$	Filter columns of F_{k} to enforce sufficient LI

Strategies:

- Dynamic choice of damping β_{k}, based on $\theta_{k}\left(\left(1-\beta_{k-1}\right)+\kappa \beta_{k-1}\right) \leq\left(1+\theta_{k}\right) / 2$
- Dynamic choice of depth m_{k} : based on $\log _{10}\left\|w_{k}\right\|$ or based on a single switch from a small to a larger depth
- Filtering: discard columns of F_{k} for which $\left|r_{i i}\right| /\left\|f_{i}\right\|<c$

Filtering

Multiple depths

Relaxation

Relaxation \& multiple depths

Example: p-Laplacian

Picard iteration for the p-Laplacian: $-\operatorname{div}\left(\left(|\nabla u|^{2} / 2\right)^{(p-2) / 2} \nabla u\right)=c$
$p>2$: degenerate elliptic equation. Nonlinear diffusion coefficient $\rightarrow 0$ as $|\nabla u| \rightarrow 0$
$1<p<2$: singular elliptic equation. Nonlinear diffusion coefficient $\rightarrow \infty$ as $|\nabla u| \rightarrow 0$ Choose $u_{0} \in V_{h}$. For $k \geq 1$: Find $u_{k} \in V_{h}$ satisfying for all $v \in V_{h}$

$$
\int_{\Omega}\left(\varepsilon^{2}+\left|\nabla u_{k-1}\right|^{2} / 2\right)^{(p-2) / 2} \nabla u_{k} \cdot \nabla v \mathrm{~d} x=\int_{\Omega} c v \mathrm{~d} x
$$

$\varepsilon \geq 0$ is the regularization, $\varepsilon>0$ for $1<p<2$
V_{h} : space of piecewise linear functions over a uniform left-crossed triangulation of $\Omega=(0,2) \times(0,2)$. Initial iterate: $u_{0}=(x-1)(y-1)(x-2)(y-2) x y$

$p>2$

$1<p<2$

Filtering for the p-Laplacian, $1<p<2$

$-\operatorname{div}\left(\left(\varepsilon^{2}+|\nabla u|^{2} / 2\right)^{(p-2) / 2} \nabla u\right)=c, \quad p=1.06, \quad c=\pi, \quad \varepsilon=10^{-14}$
V_{h} : space of piecewise linear functions over a 128×128 uniform left-crossed triangulation of $\Omega=(0,2) \times(0,2)$ with 16,641 total degrees of freedom SG denotes "safeguarded," columns of F_{k} for which $r_{i i} /\left\|f_{i}\right\|<0.25$ are removed.
Left: Residual histories to tolerance $\left\|w_{k}\right\| \leq 10^{-10}$ for constant depth with and without filtering
Right: The number of columns in F_{k} selected for use in each filtered iteration

Filtering can make a big difference, particularly in the early stages

Filtering and dynamic depth selection

$-\operatorname{div}\left(\left(\varepsilon^{2}+|\nabla u|^{2} / 2\right)^{(p-2) / 2} \nabla u\right)=c, \quad p=1.06, \quad c=\pi, \quad \varepsilon=10^{-14}$
V_{h} : space of piecewise linear functions over a 128×128 uniform left-crossed triangulation of $\Omega=(0,2) \times(0,2)$ with 16,641 total degrees of freedom SG denotes "safeguarded," columns of F_{k} for which $r_{i i} /\left\|f_{i}\right\|<0.25$ are removed. $\psi_{n, N}$ denotes $\min \left\{\max \left\{n,\left\lceil-\log _{10}\left\|w_{k}\right\|\right\rceil\right\}, N\right\}$

Left: Residual histories to tolerance $\left\|w_{k}\right\| \leq 10^{-10}$ for constant and dynamic depths with and without filtering
Right: The number of columns in F_{k} selected for use in each filtered iteration

Filtering is useful for constant depths; dynamic depth selection is another way to effectively handle the early stages

Filtering: Which columns of F_{k} are used?

$-\operatorname{div}\left(\left(\varepsilon^{2}+|\nabla u|^{2} / 2\right)^{(p-2) / 2} \nabla u\right)=c, \quad p=1.06, \quad c=\pi, \quad \varepsilon=10^{-14}$

Results shown for $m=8$. The columns to the left (more recent) are more often dropped!

Filtering and dynamic depth selection

$-\operatorname{div}\left(\left(\varepsilon^{2}+|\nabla u|^{2} / 2\right)^{(p-2) / 2} \nabla u\right)=c, \quad p=1.06, \quad c=\pi, \quad \varepsilon=10^{-14}$
V_{h} : space of piecewise quadratic functions over a 128×128 uniform left-crossed triangulation of $\Omega=(0,2) \times(0,2)$ with 66,049 total degrees of freedom SG denotes "safeguarded," columns of F_{k} for which $r_{i i} /\left\|f_{i}\right\|<0.45$ are removed. $\psi_{n, N}$ denotes $\min \left\{\max \left\{n,\left\lceil-\log _{10}\left\|w_{k}\right\|\right\rceil\right\}, N\right\}$

Left: Residual histories to tolerance $\left\|w_{k}\right\| \leq 10^{-10}$ for constant depth with and without filtering
Right: Residual histories to tolerance $\left\|w_{k}\right\| \leq 10^{-10}$ for dynamic depth with and without filtering

Dynamic depth selection is in this case more efficient for higher order elements

Filtering: Which columns of F_{k} are used?

$-\operatorname{div}\left(\left(\varepsilon^{2}+|\nabla u|^{2} / 2\right)^{(p-2) / 2} \nabla u\right)=c, \quad p=1.06, \quad c=\pi, \quad \varepsilon=10^{-14}$

Filtering, adaptive damping and dynamic depth selection

$-\operatorname{div}\left(\left(\varepsilon^{2}+|\nabla u|^{2} / 2\right)^{(p-2) / 2} \nabla u\right)=c, \quad p=6.0, \quad c=\pi, \quad \varepsilon=0$
V_{h} : space of piecewise linear functions over a 128×128 uniform left-crossed triangulation of $\Omega=(0,2) \times(0,2)$ with 16,641 total degrees of freedom SG(s): columns of F_{k} for which $r_{i i} /\left\|f_{i}\right\|<s \in\{0.5,0.6,0.7\}$ are removed. $\psi_{n, N}$ denotes $\min \left\{\max \left\{n,\left\lceil-\log _{10}\left\|w_{k}\right\|\right\rceil\right\}, N\right\}$

Residual histories to tolerance for constant and dynamic depths with and without filtering and adaptive damping Left: maximum depth 4. Right: maximum depth 8.

Adaptive damping (AD): $\kappa_{j}=\left\|w_{j+1}-w_{j}\right\| /\left\|u_{k}-u_{k-1}\right\| . \beta_{j}$ chosen between $\beta_{\text {min }}=0.1$ and $\beta_{\text {max }}=0.6$ so that $\left(\left(1-\beta_{j}\right)+\kappa_{j} \beta_{j}\right) \theta_{j+1}<\left(1+\theta_{j+1}\right) / 2$

Only sufficiently filtered iterations converged; adaptive damping improved convergence

A note to FEniCS users

There exist wrong ways to interface between FEniCS and SciPy's QR routines But there are also ways that work well!

```
##
W = Function(V)
w1 = Function(V)
e_k = Function(V)
w1v = as_backend_type(w1.vector()).vec()
wv = as_backend_type(w.vector()).vec()
ekv = as_backend_type(e_k.vector()).vec()
##
```

$:$
\#\# \#\#
if m_max > 0: \#\# -- update X_mat and F_mat
X_mat $[:, 1:]=X_{1} \operatorname{mat}[:,:-1]$
F_mat $[:, 1:]=$ F_mat $\left.^{2}:,:-1\right]$
\#X_mat $[:, 0]=$ e_k.vector ($)$
\#F_mat $[:, 0]=$ w1.vector () - w.vector ();
X_mat $[:, 0]=$ ekv.copy ($)$
wV.axpy (-1.0, w1v)
F_mat $[:, 0]=$ wv.copy ()
w.vector () [:] = w1.vector()
\#\# \#\#
W_range, RR = la.qr_multiply(-F_mat[:,:mn],w1v, l
overwrite_a=False,overwrite_c=False)

Conclusions and Outlook

- The new theoretical understanding guides the design of methods with adaptively updated filtering, algorithmic depth, and damping, to stabilize and accelerate convergence
- If Newton is working, then use it! If Newton is diverging, or it is "undesirable" to form a Jacobian, then applying AA to a linearly converging method can give Newton-like performance at low cost, if it is implemented well.
- Recent work includes application to non-Newtonian flows including Bingham fluids (with L. Rebholz, D. Vargun) and grade-two fluids (with L. R. Scott)
- In process: Can we put all these ideas together to create a robust globalization strategy?

Pictured: we're working on it...

Example: Anderson applied to Picard for steady NSE (3D)

Picard iteration for steady Navier-Stokes (moving lid problem)

- Choose $u_{0} \in X_{h}$. For $k \geq 1$: Find $\left(u_{k}, p_{k}\right) \in\left(X_{h}, Q_{h}\right)$ s.t. for all $(v, q) \in\left(X_{h}, Q_{h}\right)$

$$
\begin{aligned}
b^{*}\left(u_{k-1}, u_{k}, v\right)-\left(p_{k}, \nabla \cdot v\right)+v\left(\nabla u_{k}, \nabla v\right) & =(f, v) \\
\left(\nabla \cdot u_{k}, q\right) & =0 \\
b^{*}(u, v, w):=(u \cdot \nabla v, w)+\frac{1}{2}((\nabla \cdot u) v, w) &
\end{aligned}
$$

- $\left(X_{h}, Q_{h}\right)=\left(\mathscr{P}_{3}, \mathscr{P}_{2}^{\text {disc }}\right)$ Scott-Vogelius elements, barycenter-refined tetrahedral mesh, ~ 1.3 million DOF.
- Domain: $\Omega=(0,1)^{3}$; no forcing $f=0$; kinematic velocity $v=1 / \operatorname{Re}$
- 'Moving lid" $u(x, y, 1)=\langle 1,0,0\rangle^{T}$, no-slip (zero-velocity) condition on other sides
- $R e=2500$

