APPLICATIONS OF GRAPH LAPLACEANS: CLUSTERING I



Clustering

» Problem: we are given n data items: x,x2,---

, . Would like to

‘cluster’ them, i.e., group them so that each group or cluster contains items

that are similar in some sense.

> Example:

Superhard

Superconductors ‘
: Catalytic

Multi-ferroics

» Each group is a ‘cluster’ or a ‘class’

Photovoltaic

Ferromagnetlc

Thermo-electric

materials

PCA - digits : 5 —-7

» Example: Digits

~N o o
ol

» ‘Unsupervised learning’
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What is ‘Unsupervised Learning’?

Ans: Class of methods that do not exploit labeled data
» Example of digits: perform a 2-D projection

» Images of same digit tend to cluster (more or less)

» Such 2-D representations are popular for visualization

» (Can also try to find natural clusters in data, e.g., in materials
>

Basic clusterning technique: K-means
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Example: Community Detection

» Communities modeled by an ‘affinity’ graph [e.g., ‘'user A sends frequent
e-mails to user B’] . [data: www-personal.umich.edu/~mejn/netdata/]
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» Use ‘blocking’ techniques for sparse matrices
» Advantage of this viewpoint: need not know # of clusters.
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www-personal.umich.edu/~mejn/netdata/

Example of application | Data set from :

http://www-personal.umich.edu/~mejn/netdata/

» Network connecting bloggers of different political orientations [2004 US
presidentual election]

» ‘Communities’: liberal vs. conservative
» Graph: 1,490 vertices (blogs) : first 758: liberal, rest: conservative.
» Edge: ¢« — j : a citation between blogs i and j

» Blocking algorithm (Density theshold=0.4): subgraphs [note: density =
[E|/IVI*]

» Smaller subgraph: conservative blogs, larger one: liberals
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http://www-personal.umich.edu/~mejn/netdata/

A basic method: K-means

» A basic algorithm that uses Euclidean distance

1 Select p initial centers: ¢4, ¢», ..., ¢, fOr classes 1,2,--- ,p
2 For each z; do: determine class of x; as argmin,||x; — ck||
3 Redefine each ¢, to be the centroid of class k

4 Repeat until convergence

C1

PY o0 ® . .
. ¢ o »  Simple algorithm
o . » Works well (gives good re-
o €3 o
o o sults) but can be slow
c2 ° ¢ » Performance depends on ini-
o ® o tialization
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Methods based on similarity graphs

» (Class of Methods that perform clustering by exploiting a graph that de-
scribes the similarities between any two items in the data.

» Need to:

1. decide what nodes are in the neighborhood of a given node

2. quantify their similarities - by assigning a weight to any pair of nodes.

Example: | For text data: Can decide that any columns ¢ and ;5 with a
cosine greater than 0.95 are ‘similar’ and assign that cosine value to w,;
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First task: build a ‘similarity’ graph

» Goal: to build a similarity
graph, i.e., a graph that captures
similarity between any two items

» Two methods: K-nearest Neighbor graphs or use Gaussian (‘heat’) kernel




K-nearest neighbor graphs |

» (Given: a set of n data points X = {x,...,x,} — vertices

» Given: a proximity measure between two data points x; and xz; — as
measured by a quantity dist(x;, ;)

» Want: For each point x; a list of the ‘nearest neighbors’ of z; (edges
between x; and these nodes).

» Note: graph will usually be directed — need to symmetrize
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Nearest neighbor graphs

® ® PY
Data o ° O
» For each node, get
a few of the nearest >
neighbors — Graph o
o
Graph O

» Problem: How to build a nearest-neighbor graph from given data

» We will revisit this later.
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Two types of nearest neighbor graph often used:
e-graph: Edges consist of pairs (x;, ;) such that p(x;, z;) <€

kNN graph: Nodes adjacent to x; are those nodes x, with the k& with
smallest distances p(x;, /).

» e-graph is undirected and is geometrically motivated. Issues: 1) may
result in disconnected components 2) what €?

» kNN graphs are directed in general (can be trivially fixed).

» kNN graphs especially useful in practice.
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Similarity graphs: Using ‘heat-kernels’ |

Define weight between ¢ and j as:

)
—llw;—;?

wz-jzfij X (¢ € "X If ||:13,—:133|| <r

0 if not

\

» Note ||z; — x;|| could be any measure of distance...
» f;; = optional = some measure of similarity - other than distance
» Only nearby points kept.

» Sparsity depends on parameters
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Edge cuts, ratio cuts, normalized cuts, ...

» Assume now that we have built a ‘similarity graph’

» Setting is identical with that of graph partitioning.

» Need a Graph Laplacean: L =

D = diag(W = ones(n, 1)) [in matlab notation]

» Partition vertex set V in two sets A and B with

AUB=V, ANnB=0

» Define

D — W with w;; = O,wij > 0 and

cut(A, B) =

> w(u,v)

u €A, veEB
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» First (naive) approach: use this measure to partition graph, i.e.,
... Find A and B that minimize cut(A, B).

» lIssue: Small sets, isolated nodes, big imbalances,
® ' @ Min-cuti
. = [

-

®e0e  ©
e Min-cut 2

Better cut
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» Standard Graph Partitioning approach: Find A, B by solving

Minimize cut(A, B), subjectto |A| = |B|

» Condition |A| = | B| not too meaningful in some applications - too restric-
tive in others.

»  Minimum Ratio Cut approach. Find A, B by solving:

cut(A,B)

Minimize A5

» Difficult to find solution (original paper [Wei-Cheng '91] proposes several
heuristics)

»  Approximate solution : spectral .
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Theorem [Hagen-Kahng, 91] If X\, is the 2nd smallest eigenvalue of L,
then a lower bound for the cost ¢ of the optimal ratio cut partition, is:

A
02—2.
n

Proof: Consider an optimal partition A, B and let p = |A|/n,q = |B|/n.
Note that p + g = 1. Let x be the vector with coordinates

{q ifi € A

r;,; = .

—pifs € B

Note that = L 1. Also if (¢, ) == an edge-cut then |xz; — z;| = |q — (—p)| =

lg + p| = 1, otherwise z; — z; = 0. Therefore, 'Lz =, » p(xi — x;)* =
w(A, B). In addition:
_ lALB|

|lz||? = pg®n + qp*n = pg(p + q)n = pgn =

n



Therefore, by the Courant-Fischer theorem:

(Lx,z) w(A,B)

n X =n X c.
|Al.| B

Ao < —
= (@)

Hence result. Il

» |dea is to use eigenvector associated with A, to determine partition, e.g.,
based on sign of entries. Use the ratio-cut measure to actually determine

where to split.
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Normalized cuts [Shi-Malik,2000]

» Recall notation w(X,Y) = > v w(z,y) - then define:

zeX,ye
ncut(A, B) = S4CL3) | cultLD)
» Goal is to avoid small sets A, B
#| What is w(A, V) in the case when w;; == 17
» Let = be an indicator 1ific A
vector: i = {0 if i€ B

» Recallthat: z'Lz =) ;. pwij|lz; —z;|* (note: each edge counted
once)




» Therefore:

cut(A, B) = Z w;; = ' Lz

a}i:1,a}j=0

w(A,V)=> di=2"Wi1=a2"DT

xr;=1

w(B,V)=) di=(1-2)"Wi=(1-2)"D1

:L'j:O

» Goal now: to minimize ncut

in NCUt(A, B) = n T LT + v Le
AB (4,B) = wirél{lgfl} x'Dx (1 —x)'Dx
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~w(AV) xT'D 1
Let B_w(B,V)  (1—2)™D1
y=x—06(1—x)

. y' Ly
Then we need to solve: vi f0,-8) yTDy
Subjectto y'D1 =0

+ Relax — need to solve Generalized eigenvalue problem

Ly = ADy

y1 = 1 is eigenvector associated with eigenvalue A; = 0

Y2 associated with second eigenvalue solves problem.
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A few properties

#)| Show that

cut(A, B)

t(A,B) = o X
neut(A, B) = o X V) x w(B. V)

where o is a constant

#| How do ratio-cuts and normalized cuts compare when the graph is d-
regular (same degree for each node).




Extension to more than 2 clusters

» Just like graph partitioning we can:

1. Apply the method recursively [Repeat clustering on the resulted parts]

2. or compute a few eigenvectors and run K-means clustering on these eigen-
vectors to get the clustering.
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Application: Image segmentation

» First task: obtain a graph from pixels.

» Common idea: use “Heat kernels”

» Let F; = feature value (e.g., brightness), and Let X, = spatial position.

Then define

( XX .2
_||Fi_Fj||2 1X; Xg”

w;; = e oF X (¢ € "X If”XZ — X]” <r
0 else

\

» Sparsity depends on parameters




Spectral clustering: General approach

1 Given: Collection of data samples {x1, z3,--- , x,}

2 Build a similarity graph be-
tween items

3 Compute (smallest) eigenvector (s) of resulting graph Laplacean
4 Use k-means on eigenvector (s) of Laplacean
» For Normalized cuts solve generalized eigen problem.
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» Recall observation made earlier:

=
|

» Alg. Multiplicity of eigenvalue zero = # connected components.
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Building a nearest neighbor graph

» Question: How to build a nearest-neighbor graph from given data?
o ) P )

o
Data ()

Graph [

» Will demonstrate the power of a divide a conquer approach combined
with the Lanczos algorithm.

» Note: The Lanczos algortithm will be covered in detail later
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Recall: Two common types of nearest neighbor graphs
e-graph: Edges consist of pairs (x;, ;) such that p(x;, z;) <€

kNN graph: Nodes adjacent to x; are those nodes x, with the k& with
smallest distances p(x;, /).

» e-graph is undirected and is geometrically motivated. Issues: 1) may
result in disconnected components 2) what €?

» kNN graphs are directed in general (can be trivially fixed).

» kNN graphs especially useful in practice.
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Divide and conquer KNN: key ingredient

» Key ingredient is Spectral bisection
» Let the data matrix X = [zq,...,x,] € R¥*"
» Each column == a data point.

» Centerthe data: X = [&1,...,%n] = X — ce®
where ¢ == centroid; e = ones(d, 1) (matlab)

Goal: Split X into halves using a hyperplane.

Method: Principal Direction Divisive Partitioning D. Boley, ’98.

ldea: Use the (o, u,v) = largest singular triplet of X with: ul'X = oo’
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» Hyperplane is defined as (u,x) = 0, i.e., it splits the set of data points
Into two subsets:

X, = {CIZZ | ’U,Tiﬁi > O} and X_ = {CIZZ | ’U,Tiﬁi < O}.

+ SIDE
_ SIDE Hyperplane

» Note that ul'%; = uTXei = ovle; —
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X_|_:{£Ez'|’vz'20} and X_:{ZBil’Uz'<O},

where v; is the i-th entry of v.

» |n practice: replace above criterion by

Xy ={x; | v; >med(v)} & X_ = {x; | v; < med(v)}

where med(v) == median of the entries of v.

» For largest singular triplet (o, u,v) of X : use Golub-Kahan-Lanczos
algorithm or Lanczos applied to X XT or XTX

» (Cost (assuming s Lanczos steps) : O(n x d x s) ; Usually: d very small
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Two divide and conquer algorithms

Overlap method: divide current set into two overlapping subsets X;, X,

Glue method: divide current set into two disjoint subsets X, X plus a third
set X3 called gluing set.

: <— hyperplane | hyperplane

»  Exploit recursivity




The Overlap Method |

» Divide current set X into two overlapping subsets:

X1 ={x; | vi > —ho(Sy)} and Xo = {x; | vi < ha(Sy)},

e Where S, = {|v;] |t =1,2,...,n}.

e and h,(-) is a function that returns an element larger than (100a)% of
those in S,

» Rationale: to ensure that the two subsets overlap (100«)% of the data,
l.e.,
X1 N Xa| = [alX]].
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The Glue Method |

Divide the set X into two disjoint subsets X; and X, with a gluing subset X3:

X1UX2:X, XlﬂXQZ(b, X1HX3¢(Z), XzﬂXg#@

Criterion used for splitting:

Xy ={z;|vi 20}, Xp={z;|v; <0},
X3 ={{x; | —ha(Sy) < v; < ho(Sy)}.

Note: gluing subset X3 here is just the intersection of the sets X, X, of the
overlap method.
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Theorem The time complexity for the overlap method is
1

1 —log,(1+ a)

To(n) = O(dn’), where: to = 1085/(1410)2 =

Theorem The time complexity for the glue method is

t — . 2 t
Ty(n) = O(dn"/a), where ty= sol.tothe equ.: of + o' = 1.

Example: | When a = 0.1, then ¢, = 1.16 while ¢ty = 1.12.

Reference:

Jie Chen, Haw-Ren Fang and YS, “Fast Approximate kNN Graph Construc-
tion for High Dimensional Data via Recursive Lanczos Bisection” JMLR, vol.

10, pp. 1989-2012 (2009).
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APPLICATIONS OF GRAPH LAPLACEANS: GRAPH EMBEDDINGS I



Graph embeddings

» We have seen how to build a graph to represent data
» @Graph embedding does the opposite: maps a graph to data

Given: a graph that models some data (e.g., a kNN graph)

— Data: ¥ = [yh Y2q 7yn] in R<

» Trivial use: visualize a graph (d = 2)
» Wish: mapping should preserve similarities in graph.




Vertex embedding: map every vertex =; to a vector y; € R¢

» Many applications [clustering, finding missing link, semi-supervised learn-
Ing, community detection, ...]

» Graph captures similarities, closeness, ..., in data
Objective: Build a mapping of each vertex 7 to a
data point y; € R<

» Many methods do this

» Eigenmaps and LLE are two of the best known
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» Eigenmaps uses the graph Laplacean

» Recall: Graph Laplacean is a matrix defined by :

L=D-W

J71

w;; = 0 else

with Adj(2) = neighborhood of ¢ (excludes %)

» Remember that vertex ¢ represents data item x;. We will use z or x; to
refer to the vertex.

» We will find the y;’s by solving an optimization problem.
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The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*

F(Y)= ) willyi—y;l*> subjectto YDY' =1

1,7=1

Motivation: if ||x; — x;|| is small (orig. data), we
want ||y; — y,|| to be also small (low-Dim. data)
» Original data used indirectly through its graph
» QObijective function can be translated to a trace
(see Property 3 in Lecture notes 9) and will yield
a sparse eigenvalue problem
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» Problem translates to:

min Tr [Y(D-W)Y'] .
Y € Ran
YDY' =1
» Solution (sort eigenvalues increasingly):

(D —W)u; =X\Du;; yi=u; i=1,---,d

» Ann x n sparse eigenvalue problem [In ‘sample’ space]

» Note: can assume D = I. Amounts to rescaling data. Problem becomes

(I — W)u; = A\u; ; yz:u;ra t1=1,---,d
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Locally Linear Embedding (Roweis-Saul-00)

» LLE is very similar to Eigenmaps. Main differences:
1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed: want to preserve graph

1. Graph: Each x; is written as a convex
combination of its k nearest neighbors:
xr; X Xw;x, ZjeNi w;; =1
» Optimal weights computed (‘local calcula-
tion’) by minimizing

||213z — Ewija:jH for 1 = 1l,:--,n
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2. Mapping:

The y;’s should obey the same “affinity’ as x;'s ~~
Minimize:

Z Yi — Z W;;Y;j subjectto: Y 1 =0, YY' =1
J

)

Solution:

(I — WT)(I — VV)’U,z = )\zuz, Y; — 'lLT .

1

» (I —WT'")(I— W) replaces the graph Laplacean of eigenmaps
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Implicit vs explicit mappings

» In Eigenmaps and LLE we only determine a set of y/s in R* from the data
points {x;}.

» The mapping Yyi = ¢(xi),t = 1,--- ,n jsimplicit

» Difficult to compute a y for an x that is not one of the x;’s

» Inconvenient for classification. Thus is known as the “The out-of-sample
extension” problem

» In Explicit (also known as linear) methods: mapping ¢ is known explicitly
(and it is linear.)
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Locally Preserving Projections (He-Niyogi-03)

» LPP is a linear dimensionality reduction technique

» Recall the setting:
WantV e Rmx4: 'y = VTX

d

» Starts with the same neighborhood graph as Eigenmaps: L=D — W =

m

VT

Y

Yi I/

graph ‘Laplacean’; with D = diag({Z;w;;})-

224

n

d
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»  Optimization problem is to solve

i oy g — 21112 T
Y ERdxg,u;lDYT:I Yijwijllyi —yill”, Y=V X.

» Difference with eigenmaps: Y is an explicit projection of X
» Solution (sort eigenvalues increasingly)

XLX'"v;=XNXDX"v, y;.=vX

» Note: essentially same method in [Koren-Carmel’'04] called ‘weighted
PCA’ [viewed from the angle of improving PCA]
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ONPP (Kokiopoulou and YS ’05)

» Orthogonal Neighborhood Preserving Projections

» A linear (orthogonoal) version of LLE obtained by writing Y in the form
Y =V'X

» Same graph as LLE. Objective: preserve the affinity graph (as in LLE)
*but* with the constraintY = V'X

» Problem solved to obtain mapping:
min Tr VIXI-WwWHI -wW)X'V]
st VIV =1

» InLLE replace V!X by Y
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More recent methods

» Quite a bit of recent work - e.g., methods: node2vec, DeepWalk, GraRep,
.... oee the following papers ... among many others :

[1] William L. Hamilton, Rex Ying, and Jure Leskovec Representation Learn-
ing on Graphs: Methods and Applications arXiv:1709.05584v3

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning Graph
Representations with Global Structural Information, CIKM, ACM Conference
on Information and Knowledge Management, 24

[3] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy, Distributed
Large-scale Natural Graph Factorization [Proc. WWW 2013, May 1317, 2013,
Rio de Janeiro, Brazil]
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Example: Graph factorization

» Line of work in Papers [1] and [3] above + others

» Instead of minimizing > w;;|ly; — v,||3 as before

... try to minimize Z lwi; — y] y;|?

» In other words solve: = miny |W — YTY||%

» Referred to as Graph factorization

» Common in |knowledge graphs




Major tool of Data Mining: Dimension reduction

» Eigenmaps and LLE are a form of dimension reduction:

Data in R™ — graph — Data in R¢

» So are the explicit (linear) methods (LPP, ONPP), ...,

Dimenson reduction: | Given: X = [x1,-+-,x,] € R™ "™ find a low-

dimens. representation Y = [y, ,y,] € R¥>" of X

» Achieved by amapping ®:2 ¢ R™ — y € R  so:

¢(wz):yza t=1,---,n
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.t .E..::o m X X; \/

d | Y Vvl|¥

n

» dmaybelinear: y;=W'z;, Vj,onY = W'X
» ... or nonlinear (implicit).

» Mapping ® required to: Preserve proximity? Maximize variance? Pre-
serve a certain graph?
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Basics: Principal Component Analysis (PCA)

In ' Principal Component Analysis W is computed to:

Maximize vari- . o 2

ance of pro- max > llyi— = vl » vi=W'a
. . WeRmMXd.WTW=TI - n <

jected data: i=1 i=1 ||,

» Leads to

S TrWH(X —pe) (X —pe)TW]|, p=-37
maximizing

»  Solution W = { dominant eigenvectors } of the covariance matrix = Set
of left singular vectors of X = X — pe’
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SVD:

X=UxV', U'U=1, V'V=1I, ¥ =Diag

» Optimal W = U; = matrix of first d columns of U

» Solution W also minimizes ‘reconstruction error’ ..

Dz = WW | = > " [lai — Wyl

» |In some methods recentering to zero is not done, i.e., X replaced by X.
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Recall: Unsupervised learning

“Unsupervised learning” : methods do not
exploit labeled data
» Example of digits: perform a 2-D projec-
tion
» Images of same digit tend to cluster
(more or less)
» Such 2-D representations are popular
for visualization
» Can also try to find natural clusters in
data, e.g., in materials
» Basic clusterning technique: K-means

PCA - digits : 5 —7

(]
é
o

L .
od 5
o * 6

° & o
°°°‘ ‘ ‘ ‘07‘

Photovoltaic

Superhard
Superconductors
.e Q
08 Ferromagnetic
Q . Catalytic .
Multi-ferroics Thermo-electric
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Example: Digit images (a random sample of 30)

10

X
N

20
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W

20

W)
(A
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o

15

|

[N
o

™

h Y

N

o
a1
[EnY
o
=
a1
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2-D ’reductions’:

PCA - digits: 0 — 4

LLE - digits: 0 —— 4

-0.1 0 0.2

ONPP - digits: 0 —— 4

X %

6 0.15¢
X + 0
4r X X 1] 0.1¢
=
x O 2505t
27 Xx A3
5 J o
Or X
\ -0.05}
_2 L x X X
X X -0.1¢
| %t
N -0.15}
-6 - ’ -0.2
-10 -5 0 5 10 -0.2
K-PCA - digits : 0 —— 4
0.2¢ 0.1r
X X + O
0151 R « 1005
o XX x
01t ** >?f>§(>e$<>><<x o 2 ot
20K A 3
0.05f 4|-0.05}
of e 0.1t
-0.05¢ -0.15¢
-0.1t -0.2t
-0.15 - - - : -
0.07 0.071 0.072 0.073 0.074

235

25 : : :
54341 -54341 -54341 -5.4341 -54341

x107°
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SPECTRAL DENSITIES AND RANK ESTIMATION I



What dimension to use in dimension reduction?

» |Important question — but a hard one.

» Often, dimension k is selected in an ad-hoc way.
» k = intrinsic rank of data.

» (Can we estimate it?

Two scenarios:

1. We know the magnitude of the 2.  We have no idea on the
noise, say =. Then, ignore any magnitude of noise. Determine
singular value below = and count a good threshold = to use and
the others. count singular values > .
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Determining rank by eigenvalue counts

» |dea: count eigenvalues of AT A (or AAT) that are > .

» Use technique in [E. Di Napoli, E. Polizzi, and Y.S., 2013] based on trace
estimators.

»  Summarized next for general situation of a symmetric real (or Hermitian
complex) matrix A




Eigenvalue counts [E. Di Napoli, E. Polizzi, YS]

The problem: |

Estimate number of eigenvalues of A in given interval [a, b]

Motivation: |

» Eigensolvers based on splitting the spectrum intervals and extracting
eigenpairs from each interval independently.

e Contour integration-type methods, e,g., FEAST [Polizzi 2011], Sakurai-
Sugiura - method [2003, 2007, ..]

e Polynomial filtering, e.g.,: Schofield, Chelikowsky, YS'2011.
» Problems related to rank estimation in many applications
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Eigenvalue counts: Standard approach and an alternative

Problem: A Hermitian with eigenpairs A\ < Xy < ... < X, . Want:
number p,, Of A;'s € [a, b] -where A; < a <b < A,

» Standard method: Use Sylvester inertia theorem. — Expensive

» Alternative: Exploit trace of the P = Z w;ul.
eigen-projector: Ai € [a b]
» We know that : Tr (P) = Pa)

» Goal: calculate an approximation to : Tr (P)
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» P is not available ... but can be approximated by: e (1) a polynomial in
A, or e (2) a rational function in A.

Approximation theory viewpoint: |

» Interpret P as a step function of A, namely:

1 if t € [ab]
P =h(A) where h(t) = { 0 otherwise

» Approximate h(t) by a polynomial v». Then use statistical estimator for
approximating Tr (¢»(A)) — to be discussed next

» Hutchinson’s unbiased estimator uses only matrix-vector products to ap-
proximate the trace of a generic matrix A.

How to estimate the trace of a matrix
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Trace estimation: A few examples of applications

Problem 1: Compute Tr[inv[A]] the trace of the inverse.

» Arises in cross validation methods [Stats]. Motivation for the work [Golub

& Meurant, “Matrices, Moments, and Quadrature”, 1993, Book with same title
in 2009]

Problem 2: Compute Tr[f (A)], f a certain function

» Arises in many applications in Physics, e.g., Stochastic estimations of Tr

( f(A)) extensively used by quantum chemists to estimate Density of States,
see

[H. Roder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys. Rev. B. 55, 15382
(1997)].
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Problem 3: Compute diag[inv(A)] the diagonal of the inverse

» Dynamic Mean Field Theory [DMFT, motivation for our work on this topic].
Related approach: Non Equilibrium Green’s Function (NEGF) approach used
to model nanoscale transistors.

» Uncertainty quantification: diagonal of the inverse of a covariance matrix
needed [Bekas, Curioni, Fedulova '09]

Problem 4: Compute diag[ f (A)] ; f = a certain function.

» Arises in density matrix approaches in quantum modeling

1 Here, f = Fermi-Dirac operator
Fle) =+ T oxp(E Notef when T — 0 then f — a step
function.

» Linear-Scaling methods
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Problem 5: Estimate the numerical rank.

» Amounts to counting the number of singular values above a certain thresh-
old 7 == Trace (¢.(AT A))..

¢-(t) is a certain step function.

Problem 6: Estimate the log-determinant (common in statistics)

log det(A) = Trace(log(A)) = > ., log(X\:).

.... many others
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Important tool: Stochastic Trace Estimator

» To estimate diagonal of B = f(A) (e.g., B = A™1), let:
e d(B) = diag(B) [matlab notation]

: e ® and @: Elementwise multiplication and division of vec-
Notation: I fore

e {v;}: Sequence of s random vectors

Result: I d(B) I~ Z’Uj ® B’Uj %) Z’Uj ® (F
P j—1

C. Bekas , E. Kokiopoulou & YS (°05); C. Bekas, A. Curioni, |. Fedulova '09;

Ark. 47th Spring Lect., May 4-6, 2022



Trace of a matrix

» For the trace - take vectors of unit norm and

1 S
Trace(B) ~ — E v; Bu;
S
§=1

» Hutchinson’s estimator : take random vectors with components of the
form 1 /4/n [Rademacher vectors]

» Extensively studied in literature. See e.g.: Hutchinson ‘89; H. Avron and
S. Toledo '11; G.H. Golub & U. Von Matt '97; Roosta-Khorasani & U. Ascher
'15; ...
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Typical convergence curve for stochastic estimator

» Estimating the diagonal of inverse of two sample matrices
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Alternative: standard probing

Basis of the method: Color columns of matrix so that no two columns of the

same color overlap.

Entries of same color can be
computed with 1 matvec

»  Corresponds to coloring
graph of AT A.

» For problem of diag(A) need
only color graph of A
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In summary:

»  Probing much more powerful when f(A) is known to be nearly sparse
(e.g. banded)..

» Approximate pattern (graph) can be obtained inexpensively

» Generally just a handful of probing vectors needed — Can be obtained by
coloring graph

» However:

» Not as general: need f(A) to be ‘ e —sparse”’




References: |

e J M. Tang and YS, A probing method for computing the diagonal of a
matrix inverse, Numer. Lin. Alg. Appl., 19 (2012), pp. 485-501.

See also (improvements)

e Andreas Stathopoulos, Jesse Laeuchli, and Kostas Orginos Hierarchical
Probing for Estimating the Trace of the Matrix Inverse on Toroidal Lattices
SISC, 2012. [somewhat specific to Lattice QCD ]

e E. Aune, D. P. Simpson, J. Eidsvik [Statistics and Computing 2012] com-
bine probing with stochastic estimation. Good improvements reported.
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