Dealing with nuisance parameters for Bayesian model calibration

PRESENTED BY

Kellin Rumsey1 & Gabriel Huerta 1

1Department of Statistical Sciences
Sandia National Laboratories

co-authors: Lauren Hund (SNL) and Derek Tucker (SNL).
This work was supported by a Sandia National Laboratories Laboratory Directed Research and Development (LDRD) grant. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND 2019-4335 C
Background

- **Dynamic material properties experiments**: access to the most extreme temperatures and pressures attainable.
- **Sandia National Labs Z-machine**: pulsed power driver that can deliver massive electrical currents over very short timescales (of the order of 60MA over 1μs).
- **Goal**: Understanding of material models at extreme conditions by coupling computational simulations with experimental data.
Background

- **Goal**: Generalized solution for calibrating dynamic material models.
- **Physicists**: ideally want a solution that does not necessarily require a statistician in the loop.
- **Parameters of interest are physical**: material properties with “true” value that is of interest.
- **Ideally**: robust algorithm for UQ parameter calibration.
- **Firstly**: Calibrate a well-understood model - two parameters of the equation of state of tantalum.
Experimental setup

- "By coupling experimental and simulated velocity traces, parameters of the tantalum (Ta) equation of state (EOS) can be estimated".
- Massive electric currents treated as boundary conditions.
- Stress wave propagates thru system.
Calibration

- Uncertain inputs generate velocity curves using a computer model.
- Probability distributions look for "agreement" of outputs and measurements.
- Bayesian framework is a natural in this context...
Challenges

- How to accurately estimate uncertainties?
- Calibration parameters have physical interpretation.
- Lots of *nuisance* parameters.
Approach

- Bayesian Model Calibration (BMC) (Kennedy & O’Hagan 2001) often used to “tune” computer model.
- *Calibrated* model for prediction (interpolation).
- Partitioned into *physical parameters* and *nuisance parameters*.
Approach

- Kennedy & O’Hagan 2001 model,

\[y(x_i) = \eta(x_i, \theta) + \delta(x_i) + \epsilon_i \]

- \(\epsilon_i \) are known inputs (experiment test conditions, time)
- \(\theta = (\alpha, \gamma) \) are calibration parameters.
- \(\eta \) is the true value of the outcome as a function of \(x \) and \(\theta \).
- \(\epsilon_i \) is a measurement error.
- \(\delta(\cdot) \) is a discrepancy function term.
Our Framework

- We model the i^{th} observation in the j^{th} experiment as,

\[y(x_{ij}) = \eta(x_{ij}, \alpha, \gamma_j) + \delta(x_{ij}) + \epsilon_{ij} \]

- α are the (unknown) values of the calibration parameters.
- γ_j unknown values of experimental uncertainties for experiment j.
- $y(x_{ij})$ is the observed velocity at time x_{ij}.
- $\eta(x_{ij}, \alpha, \gamma_j)$ is the computer model output at x_{ij}.
- $\delta(x_{ij})$ is a G-P discrepancy term.
- ϵ_{ij} are measurement uncertainties at x_{ij}.
Dynamic material property calibration

- BMC framework to obtain inference for two material properties of Tantalum.
- B_0 and B'_0 are the Bulk modulus of tantalum and its pressure derivative.
 \[
 \alpha = (\alpha_1, \alpha_2) = (B_0, B'_0)
 \]
- Four nuisance that may vary across $p = 9$ experiments
 - Tantalum density - γ_1
 - Magnetic field scaling - γ_{2j}, $j = 1, 2, \ldots 9$
 - Aluminum thickness - γ_{3j}, $j = 1, 2, \ldots 9$
 - Tantalum thickness - γ_{4j}, $j = 1, 2, \ldots 9$
- Potential for overfitting and lack of identifiability.
Issues

- Model can fit well to data, solutions far from *true* parameter values.
- Can we diagnose such overfitting? Can we mitigate it?
- **Model discrepancy** can reduce the identifiability of the calibration parameters.

![Diagram showing best fit over all simulations and residuals are autocorrelated.](image-url)
Model Discrepancy

- Without strong assumptions about discrepancy, KOH should not be expected to provide correct inferences.
- $\delta()$ and θ are not jointly identifiable (Loeppky et al., 2006; Arendt et al., 2012; Brynjarsdóttir and O’Hagan, 2014; Tuo and Wu, 2016).
- Robust alternatives to G-P discrepancy?
 - Brown and Hund (2018) use *power likelihoods*.

 \[p(\theta|Y) \propto \exp(-wl(Y|\theta)) \cdot p(\theta) \]

- Problems with fewer experimental curves and more nuisance parameter are harder.
- Time series models?
Nuisance parameters and overfitting

- **Aluminum and Tantalum thickness parameters**: These nuisance parameters are measured with a device which we believe to be well registered.

- Measurement error is *exclusive source* of uncertainty. The prior mean and variance of these nuisance parameters are well known.

- Nuisance parameters are standardized (mean 0, variance 1).

- The *standard informative (SI) prior* is:

 \[(\gamma_{k1}, \gamma_{k2}, \cdots \gamma_{k9}) \sim N(0, I_9), \ k = 2, 3, 4\]

- “True values” are expected to look like a draw from a \(N(0, I_9)\) distribution.
Nuisance parameters and overfitting

- Three types of overfitting:
 - **Overdispersion**: Posterior estimates are collectively too large.
 - Indicates a “calibration solution”. Good fit to data but scientifically unreasonable.
 - Standard informative prior usually prevents this from occurring.
 - **Underdispersion**: Posterior estimates are collectively too close to 0.
 - Can lead to underestimation of uncertainty in α.
 - Standard informative prior will *not* address this case.
 - **Collective Bias**: The posterior estimates are collectively biased (i.e. all are negative).
 - Indicates a systematic bias *across experiments*.
 - Can lead to biased estimates of α to compensate.
Collective Bias for 2 nuisance-sets

- Left: No grouping occurs.
- Right: Collective bias implies systematic overfitting across experiments.
- Standard prior assigns same values.
A metric for overfitting

- We define,

\[M_\gamma = \frac{1}{p} \sum_{j=1}^{p} \gamma_j \quad V_\gamma = \frac{1}{p-1} \sum_{j=1}^{p} (\gamma_j - M_\gamma)^2 \]

- Prior beliefs about problem structure suggests:

\[M_\gamma \approx 0 \quad V_\gamma \approx 1 \]

- Under standard normal,

\[\pi_{M_\gamma, V_\gamma}(m, v) = N(m \mid 0, 1/p) \times [(p - 1)\chi^2(v(p - 1) \mid p - 1)] \]

- Reasonable to check that the estimates \(\hat{M}_\gamma \) and \(\hat{V}_\gamma \) are coherent with prior.
A metric for overfitting

- **Definition:** We say that \((m, v)\) is *more coherent with the prior* than \((m', v')\) if

\[
\pi_{M_\gamma, V_\gamma}(m, v) > \pi_{M_\gamma, V_\gamma}(m', v')
\]

- Define the set of all points which are less coherent with the prior than \((\hat{M}_\gamma, \hat{V}_\gamma)\)

\[
\Gamma_{\hat{M}_\gamma, \hat{V}_\gamma} = \left\{ (m, v) \mid \pi_{M_\gamma, V_\gamma}(\hat{M}_\gamma, \hat{V}_\gamma) > \pi_{M_\gamma, V_\gamma}(m, v) \right\}
\]

- **Probability of prior coherency** of \((\hat{M}_\gamma, \hat{V}_\gamma)\)

\[
p_c(\hat{M}_\gamma, \hat{V}_\gamma) = \int_{\Gamma_{\hat{M}_\gamma, \hat{V}_\gamma}} \pi_{M_\gamma, V_\gamma}(m, v) \, dmdv
\]

\[
\approx \frac{1}{L} \sum_{\ell=1}^{L} 1 \left(\pi_{M_\gamma, V_\gamma}(\hat{M}_\gamma, \hat{V}_\gamma) > \pi_{M_\gamma, V_\gamma}(m_\ell, v_\ell) \right)
\]
Diagnostic plot for simulated case $\rho = 10$

- Orange: Point estimates and posterior draws of (M_γ, V_γ)
- Blue: Prior probability contours.

4/17/19
The moment penalization prior

- Overfitting of nuisance parameters leads to $(\hat{M}_\gamma, \hat{V}_\gamma)$ with low prior coherency.
- The *moment penalization (MP) prior* penalizes solutions with low prior coherency.
- Let $h_a(x)$ be a function which takes larger values when x is close to a.

$$\pi_{\gamma}^{MP}(\gamma) \propto h_0(M_\gamma)h_1(V_\gamma)$$

- Tries to encourage solutions with

$$M_\gamma \approx 0 \quad V_\gamma \approx 1$$
The moment penalization prior

- Simple and effective choice for $h_a(x)$: Gaussian kernels
 \[\pi_{\gamma}^{MP}(\gamma) \propto \exp \left[-\lambda_1 M_\gamma^2 \right] \exp \left[-\lambda_2 (V_\gamma - 1)^2 \right] \]

- λ_1 and λ_2 control how strongly we want to enforce constraints.

- Reparameterize: $\omega_1 = 2 \text{Var}(M_\gamma) \lambda_1$ and $\omega_2 = 2 \text{Var}(V_\gamma)$

- Write $\gamma \sim MP(\omega_1, \omega_2)$ to mean that,
 \[\pi_{\gamma}^{MP}(\gamma) \propto \exp \left[-\frac{p \omega_1}{2} M_\gamma^2 \right] \exp \left[-\frac{(p - 1) \omega_2}{4} (V_\gamma - 1)^2 \right] \]

- $\gamma \sim MP(1, 1)$ is the standard moment penalization prior.
Samples from the Standard MP prior

- 10,000 draws via M-H for \(p = 2 \).
- As \(\omega \to \infty \) all density is placed on \(\pm (1/\sqrt{2}, -1/\sqrt{2}) \).
- As \(p \) grows, the induced marginal priors become \(N(0, 1) \).
Moment penalization in the limit

- **Z-Regularization:** Consider a set of \(p \) latent variables \(Z \).

\[
Z_1, \ldots, Z_p \overset{\text{iid}}{\sim} N(0, 1)
\]

\[
\gamma_k = \frac{Z_k - \bar{Z}}{S_Z}
\]

- We enforce that \(M_\gamma = 0 \) and \(V_\gamma = 1 \).
- This approximates the limit situation for \(MP(\omega_1, \omega_2) \)

\[
\omega_1 \to \infty; \quad \omega_2 \to \infty.
\]

- As \(p \) increases, marginal prior on \(\gamma_k \) goes to \(N(0, 1) \).
Z-Regularization: Marginal prior on γ_k
Data informed regularization

- The MP prior harnesses the known structure of the problem and forces each *group* to behave reasonably.
- Not appropriate for all cases, and a more general form of regularization is required.
- We consider the class of *Global-Local Gaussian scale mixtures*:
- For $k = 1, \ldots, p$,
 \[
 \gamma_k \mid (\tau, \psi_k) \sim \text{iid } N(0, \tau \psi_k)
 \]
 \[
 \tau \sim g() \quad \text{and} \quad \psi_k \sim g_k()
 \]
- Commonly used in sparse linear model settings.
Data informed regularization

- Horseshoe prior is obtained by setting
 \[\tau \sim C_+(0, \sigma) \quad \text{and} \quad \psi_k \sim C_+(0, \sigma_k) \]

- *Shrink globally:* When regularization is required, global parameter \(\tau \) becomes very small.

- *Act locally:* Active components are selected by allowing \(\psi_k \) to become very large.

- If \(p \) is large, this can significantly increase the cost of BMC.
Example: The simple machine

- Brynjarsdottir and O’Hagan (2014): The simple machine delivers work

\[\zeta(x) = \frac{E \cdot x}{1 + x/20} \]

- \(x \) is the amount of effort put into the machine.
- \(E \) is the efficiency of the machine.
- Denominator accounts for loss of work due to friction.
- The naive simulator introduces model discrepancy

\[\eta(x, E) = Ex \]
Example: The simple machine

- We consider $p = 10$ simple machines, and introduce base efficiency G_j as a machine-dependent nuisance parameter.
- Inputs $x_1, x_2, \cdots x_n$ evenly spaced over $[1, 4]$
- Data generating process:

$$y_{ij} = G_j + \frac{E x_i}{1 + x_i/20} + \epsilon_i$$

$$G_j \sim N(0, 0.05^2)$$

$$\epsilon_i \sim N(0, 0.01^2)$$

- Naive simulator:

$$\eta(x, E, G) = G + E x$$

- True efficiency is $E = 0.65$. Standardize parameters:

$$\alpha = \frac{E - 0.65}{0.3} \sim N(0, 1)$$

$$\gamma_k = \frac{G_k - 0}{0.05} \sim N(0, 1)$$
Example: The simple machine

- Model discrepancy leads to systematic bias.
Example: The simple machine

- Under standard informative prior
Example: The simple machine

- Under moment penalization prior
Example: The simple machine

- Posterior inference improves under MP, but is still far from truth.
- This is still valuable information! Model discrepancy is leading to biased inference on the parameter of interest.
Example: Borehole function

- The true process,

\[\zeta(x, \theta) = \frac{2\pi T_u \Delta H}{\ln(r/r_w) \left(1 + \frac{2LT_u}{\ln(r/r_w)r_w^2K_w + \frac{T_u}{T_l}} \right)} \]

- Most of the inputs are treated as known
 - \(r, T_u, T_l, \Delta H \) fixed at usual values (Surjanovic & Bingham, 2017).
- Compare the moment penalization prior to the standard informative prior.
Example: Borehole function

- $x = L$ known input where L is the length of the borehole (meters).
- The input r_w, radius of the borehole (nuisance parameter),
 \[\gamma = \frac{r_w - 0.1}{0.0161812} \sim N(0, 1) \]

- The physical parameter K_w, hydraulic conductivity of the borehole (meters per year).
 \[\alpha = \frac{K_w - 10950}{632.2} \sim N(0, 1) \]

- A low fidelity simulator,
 \[\eta(x, \theta) = \frac{2\pi T_u \Delta H}{\ln(r/r_w) \left(1.5 + \frac{1.4LT_u}{\ln(r/r_w)r_w^2K_w} + \frac{T_u}{T_l} \right)} \]
Example: Borehole function
Diagnostic plot
Example: Borehole function
Estimation of nuisance parameters
Example: Borehole function Simulation study

- $p = 5$, $n = 10$.
- $\alpha_* \in \{-1, 0, 2\}$.
Example: Borehole function Simulation study

<table>
<thead>
<tr>
<th>Prior</th>
<th>Prior Coherency</th>
<th>Avg MSE of γ</th>
<th>MSE of α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\alpha_* = 0$</td>
<td>$\alpha_* = -1$</td>
<td>$\alpha_* = 2$</td>
</tr>
<tr>
<td>SI</td>
<td>0.05</td>
<td>0.02</td>
<td>0.19</td>
</tr>
<tr>
<td>MP(1,1)</td>
<td>0.10</td>
<td>0.06</td>
<td>0.27</td>
</tr>
<tr>
<td>MP(5,1)</td>
<td>0.50</td>
<td>0.45</td>
<td>0.59</td>
</tr>
<tr>
<td>MP(1,10)</td>
<td>0.12</td>
<td>0.06</td>
<td>0.34</td>
</tr>
<tr>
<td>MP(5,10)</td>
<td>0.76</td>
<td>0.73</td>
<td>0.83</td>
</tr>
<tr>
<td>Z-reg</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>H-shoe</td>
<td>0.07</td>
<td>0.04</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Summary of the Borehole simulation results. Reported value is the median across 100 simulations. Bold value indicates "best" value in the column.

- Posterior inference on α gets worse as inference on nuisance parameters improves.
- Still valuable information! Model discrepancy is leading to biased inference on the parameter of interest.
Dynamic material property calibration revisited

- Inference for two material properties of Tantalum.
- B_0 and B'_0 are the Bulk modulus of tantalum and its pressure derivative.

$$\alpha = (\alpha_1, \alpha_2) = (B_0, B'_0)$$

- Four nuisance that may vary across $p = 9$ experiments
 - Tantalum density - γ_1
 - Magnetic field scaling - $\gamma_{2j}, j = 1, 2, \cdots 9$
 - Aluminum thickness- $\gamma_{3j}, j = 1, 2, \cdots 9$
 - Tantalum thickness - $\gamma_{4j}, j = 1, 2, \cdots 9$

- Perform BMC for SI, SMP and MP(20, 40) priors.
Dynamic material property calibration
Diagnostic plots
Dynamic material property calibration
Physical parameter posteriors

- Similar posterior inference in all cases.
- Indicates that model discrepancy is unlikely to be causing bias in the parameters of interest.
Conclusions

- Overfitting of nuisance parameters leads to systematic bias which is often a symptom of model discrepancy.
- In complex high-dimensional problems, with appropriate problem structure, we can:
 - **Identify:** Probability of prior coherency identifies many types of overfitting, should it occur.
 - **Reduce:** The moment penalization prior reduces the systematic bias of the nuisance parameters.
 - **Diagnose:** Examine the sensitivity of posterior inference in order to diagnose the presence and effect of model discrepancy on the parameters of interest.
References

Selection of Hyper-parameters

- Adequacy of prior depends on selection of ω_1 and ω_2.
- **Update or estimate with MAP.** Weakly informative priors allow likelihood to dominate the selection. Problem of overfitting may not be addressed.
- **Cross validation.** Prediction or posterior based criteria leads to overfitting. Computationally difficult.
- **Sequential approach:** Use the diagnostic plot to increase ω_1 and ω_2 sequentially until prior coherency is reasonable.
Comparison: SI vs SMP

- For a given set of p nuisance parameters ($\gamma_1, \cdots, \gamma_p$) we compute:

 \[
 \log \pi_{SI}(\gamma) = \sum_{k=1}^{10} \log (N(\gamma_k | 0, 1)) = -\frac{1}{2} \log(2\pi) - \sum_{k=1}^{10} \frac{\gamma_k^2}{2}
 \]

 \[
 \log \pi_{MP}(\gamma) = c - \frac{p\omega_1}{2} (M_\gamma)^2 - \frac{(p - 1)\omega_2}{4} \left(V^{(m)}_\gamma - 1 \right)^2
 \]

 where M_γ and V_γ denote the mean and variance of γ.

- Think about these prior log-densities as penalties (small values) and rewards (large values).

- Compare penalty assigned by each prior over a wide range of potential nuisance sets.
Comparison: SI vs SMP

- Compare penalty assigned by each prior over a wide range of potential nuisance sets.
- **No overfitting:** Consider candidates for which overfitting is unlikely to be present. $\gamma \sim N(0, I_{10})$.
- **Overdispersion:** Explore regions of the nuisance space in which magnitude of nuisance parameters is larger than expected. $\gamma \sim N(0, 4 I_{10})$.
- **Underdispersion:** Magnitude is smaller than expected. $\gamma \sim N(0, \frac{1}{4} I_{10})$.
- **Collective Bias:** We explore regions where nuisance parameters are collectively biased compared to our expectations. $\gamma \sim N(-1, I_{10})$
Comparison: SI vs SMP

- No overfitting
- Overdispersion
- Underdispersion
- Group Bias