Objective Bayesian Analysis for Gaussian Hierarchical Models with Intrinsic Conditional Autoregressive Priors

Marco A. R. Ferreira¹ Joint work with M.J. Keefe² and C.T. Franck¹

¹Virginia Tech; ²Walt Disney Company

Spring Lecture Series - 2019

Hierarchical model with ICAR prior

Literature review

Sum-zero constrained ICAR prior

Objective priors

Simulation Study

Application: foreclosures and unemployment in OH in 2012

Outline

Motivating example

Hierarchical model with ICAR prior

Literature review

Sum-zero constrained ICAR prior

Objective priors

Simulation Study

Application: foreclosures and unemployment in OH in 2012

Motivating example: foreclosures and unemployment in OH in 2012

CAR Neighborhood Structure

Hierarchical model with ICAR prior

Literature review

Sum-zero constrained ICAR prior

Objective priors

Simulation Study

Application: foreclosures and unemployment in OH in 2012

Hierarchical model with ICAR prior

$$\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\theta} + \boldsymbol{\phi},$$

where

- **Y** is the $n \times 1$ vector containing the response variable.
- X is a $n \times p$ matrix of covariates.
- β is the $p \times 1$ vector of regression coefficients.
- $\theta = (\theta_1, \dots, \theta_n)'$ is a vector of unstructured random effects such that $\theta_1, \dots, \theta_n$ iid $N(0, \sigma^2)$.
- θ and ϕ are assumed independent a priori.

Technical difficulty

- To obtain a reference prior for a spatial hierarchical model, we have to first integrate out the spatial random effects.
- This integral operation can only be performed when the spatial random effects have a well-defined distribution.
- Usual improper intrinsic CAR random effects do not have a well-defined distribution.
- That is probably the reason why a reference prior for this widely used spatial hierarchical model has not been published to date.

Hierarchical model with ICAR prior

Literature review

Sum-zero constrained ICAR prior

Objective priors

Simulation Study

Application: foreclosures and unemployment in OH in 2012

Brief literature review

- ► CAR specifications for modeling areal data (Besag, 1974).
- Intrinsic CAR model as a prior for spatial random effects (Besag, York and Mollié, 1991).
- Comprehensive coverage of Gaussian Markov random fields (Rue and Held, 2005).
- Comprehensive coverage of hierarchical models for spatial data (Banerjeee, Carlin and Gelfand, 2014).

Brief literature review

- OBayes for proper CAR to model observed areal data (Ferreira and De Oliveira, 2007; De Oliveira, 2012; Ren and Sun, 2013).
- OBayes analysis for geostatistical models (Berger et al, 2001; De Oliveira, 2007).
- OBayes for hierarchical models for areal data with proper CAR priors (Ren and Sun, 2014).

Hierarchical model with ICAR prior

Literature review

Sum-zero constrained ICAR prior

Objective priors

Simulation Study

Application: foreclosures and unemployment in OH in 2012

Sum-zero constrained ICAR prior

CAR Neighborhood Structure

Improper Intrinsic CAR Models

The intrinsic CAR model for a vector $\boldsymbol{\omega} = (\omega_1, \omega_2, \dots, \omega_n)^T$ is specified by its conditional distributions

$$p(\omega_i|\boldsymbol{\omega}_{\sim i})\propto \exp\left\{-\frac{\tau_{\omega}}{2}\left[\sum_{i=1}^n\omega_i^2h_i-2\sum_{i< j}\omega_i\omega_jg_{ij}
ight]
ight\},$$

where

- ω_{~i} is the vector of the CAR elements for all subregions except subregion *i*;
- $\tau_{\omega} > 0$ is a precision parameter;
- $g_{ij} \ge 0$ is a measure of how similar subregions *i* and *j* are, $g_{ij} = g_{ji}$, and $h_i = \sum_{j=1}^n g_{ij}$.

Improper Intrinsic CAR Models

Alternatively, we may write the joint density for ω as

$$p(\boldsymbol{\omega}) \propto \exp\left\{-\frac{\tau_{\boldsymbol{\omega}}}{2}\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{H}\boldsymbol{\omega}\right\},$$

where H is a symmetric, positive semi-definite precision matrix defined as

$$(H)_{ij} = \begin{cases} h_i, & \text{if } i = j \\ -g_{ij}, & \text{if } i \in N_j \\ 0 & \text{otherwise.} \end{cases}$$

Sum-zero constrained ICAR prior

- Start with a vector of proper CAR random effects.
- Project this vector of random effects onto the subspace of \mathbb{R}^n that is orthogonal to the subspace spanned by the vector $n^{-1/2}\mathbf{1}_n$.
- ► Take the limit to get a sum-zero constrained ICAR.

Proper CAR (Ferreira and De Oliveira, 2007)

We use a signal-to-noise ratio parametrization to express the proper CAR as

$$\phi^{**} \sim N\left(\mathbf{0}, \frac{\sigma^2}{\tau_c} \Sigma_\lambda\right),$$

where

- σ^2 and $\tau_c > 0$ are unknown parameters,
- $\lambda > 0$ is a propriety parameter,

$$\Sigma_{\lambda}^{-1} = \lambda I_n + H,$$

• When $\lambda \rightarrow 0$ we get the improper intrinsic CAR.

Sum-Zero Constrained Proper CAR

- We define $\phi^* = P\phi^{**}$, where $P = (I_n n^{-1}\mathbf{1}_n\mathbf{1}_n^T)$ is a centering (projection) matrix.
- The distribution of ϕ^* is given by

$$\phi^* \sim N\left(\mathbf{0}, \frac{\sigma^2}{\tau_c} \Sigma_{\phi\lambda}\right),$$

where $\Sigma_{\phi\lambda} = P \Sigma_{\lambda} P^T$.

• By construction, $\sum_{i=1}^{n} \phi_i^* = 0$.

Sum-Zero Constrained ICAR

Now we take the limit as λ → 0 to obtain the final distribution for φ given by

$$\boldsymbol{\phi} \sim \mathcal{N}\left(\mathbf{0}, \frac{\sigma^2}{\tau_c} \boldsymbol{\Sigma}_{\boldsymbol{\phi}}\right),$$

Sum-zero constrained ICAR prior

Sum-zero constrained ICAR prior (Keefe et al, 2018)

$$p(\phi) = (2\pi)^{(n-1)/2} \tau_c^{(n-1)/2} \left(\prod_{i=1}^{n-1} d_i\right)^{1/2} \exp\left\{-\frac{\tau_c}{2\sigma^2} \phi' H\phi\right\} \mathbb{1}(\phi' \mathbf{1} = 0)$$

Sum-zero constrained ICAR prior

Compare to the Improper Intrinsic CAR

$$p(\boldsymbol{\omega}) \propto \exp\left\{-\frac{\tau_{\boldsymbol{\omega}}}{2}\boldsymbol{\omega}^{\mathsf{T}}\boldsymbol{H}\boldsymbol{\omega}
ight\}$$

Facts about the Sum-Zero Constrained ICAR

- ► Keefe et al (2018) consider proper CAR models with $\Sigma_{\lambda}^{-1} = \lambda K + H$.
- ► Let *K* be a symmetric positive semi-definite matrix for which the sum of its elements is positive.
- ► Keefe et al (2018) shows that for any matrix K in this class, the sum-zero constrained intrinsic CAR model does not depend on K and is, therefore, unique.

Facts about the Sum-Zero Constrained ICAR

- ► The singular Gaussian distribution N(0, τ⁻¹H⁺) is the stationary distribution of a one-at-a-time Gibbs sampler applied to the improper ICAR prior with centering on the fly (Ferreira, 20XXa).
- Centering spatial random effects ω simulated from the full conditional distribution implied by the improper ICAR is equivalent to simulating from the full conditional distribution for ϕ implied by the $N(\mathbf{0}, \tau^{-1}H^+)$ prior (Ferreira, 20XXb).
- Therefore, our reference prior is directly applicable to Gaussian hierarchical models with intrinsic CAR priors widely used in practice.

Hierarchical model with ICAR prior

Literature review

Sum-zero constrained ICAR prior

Objective priors

Simulation Study

Application: foreclosures and unemployment in OH in 2012

Objective priors

All of the objective priors we have derived fall into a class of priors of the form

$$\pi(\boldsymbol{eta},\sigma^2, au_c)\propto rac{\pi(au_c)}{(\sigma^2)^a},$$

where $a \in \mathbb{R}$ is a hyperparameter and $\pi(\tau_c)$ is referred to as the marginal prior for τ_c .

Reference prior

• Let
$$G^* = I_n - X(X'X)^{-1}X'$$
.

- Let Q* be the matrix with columns that are the normalized eigenvectors corresponding to the non-zero eigenvalues of G*.
- Let $\xi_1 \ge \xi_2 \ge \cdots \ge \xi_{n-p} > 0$ be the ordered eigenvalues of $Q^{*'}H^+Q^*$.

Reference prior

The reference prior has a = 1 and

$$\pi^{R}(\tau_{c}) \propto \frac{1}{\tau_{c}} \left[\sum_{j=1}^{n-p} \left(\frac{\xi_{j}}{\tau_{c} + \xi_{j}} \right)^{2} - \frac{1}{n-p} \left\{ \sum_{j=1}^{n-p} \left(\frac{\xi_{j}}{\tau_{c} + \xi_{j}} \right) \right\}^{2} \right]^{1/2}$$

(Keefe, Ferreira, and Franck, 2019)

٠

Posterior propriety

(i) The posterior $\pi^{R}(\beta, \sigma^{2}, \tau_{c} | \boldsymbol{y}, X)$ resulting from the reference prior $\pi^{R}(\tau_{c})$ is proper.

- (ii) The k^{th} moment of the marginal reference posterior $\pi^{R}(\tau_{c}|\mathbf{y}, X)$ does not exist for $k \geq 1$.
- (iii) The independence Jeffreys prior leads to an improper posterior distribution.
- (iv) The Jeffreys-rule prior leads to an improper posterior distribution.

Hierarchical model with ICAR prior

Literature review

Sum-zero constrained ICAR prior

Objective priors

Simulation Study

Application: foreclosures and unemployment in OH in 2012

Comparison of Priors

Competing priors:

- CARBayes package (version 4.0) has implemented gamma(0.001, 0.001) prior distributions as the default for both precision parameters.
- Best et al (1999) has used gamma(0.001, 0.001) and gamma(0.1, 0.1) prior distributions for the precisions of the unstructured and spatial random effects, respectively.

Performance is assessed using:

- frequentist coverage of credible interval.
- average interval length (IL).
- mean squared error (MSE).

Comparison of Priors

KL divergence between the spatial model and the independent model

Marco A. R. Ferreira OBayes for hierarchical models with ICAR priors

Simulation Design

- Square regions with sample sizes $n = 5^2$, 7^2 , 10^2 .
- $\sigma^2 = 2$.
- $\tau_c = 0.01, 0.032, 0.1, 0.32, 1, 3.2, 10.$
- First- and second-order neighborhood structure.
- ▶ p = 1 (intercept only) with β = 1; and p = 6 with β = (-3, -2, -1, 1, 2, 3)'.
- All covariates are generated from a normal distribution with mean 0 and variance 1.
- ▶ We generate results based on 1,000 simulated data sets for each combination of these levels of n, τ_c , neighborhood structure, and p.

Frequentist coverage and mean interval length for τ_c

MSE for the posterior median of τ_c

One simulated dataset

- ▶ Dataset simulated with a first-order neighborhood structure, square regular grid, n = 49, and parameters $\beta = 1, \sigma^2 = 2$, and $\tau_c = 0.1$.
- ► The posterior medians of *τ_c* are equal to 1.0, 2.2, and 3.2 for the reference, NB, and CARBayes analyses, respectively.
- Contours correspond to HPD regions with credible levels equal to 10%, 20%, ..., 90%.

One simulated dataset

Marco A. R. Ferreira OBayes for hierarchical models with ICAR priors

One simulated dataset

- We have found empirically that the probability of such a bad integrated likelihood behavior increases as the Moran-I statistic decreases.
- For this particular dataset, the Moran-I statistic is equal to 0.203 with a corresponding p-value of 0.0181 (null hypothesis is of no spatial dependence).
- This is not an extreme dataset; under the conditions used to simulate this dataset, the probability of the Moran-I statistic being less than 0.203 is about 0.12.

Another simulated dataset

- We now consider a dataset simulated under the same conditions as the previous dataset, but with a Moran-I statistic of moderate size.
- Specifically, for this dataset the Moran-I statistic is equal to 0.363 with a corresponding p-value of 0.00017 (null hypothesis is of no spatial dependence).
- This Moran-I statistic is close to the median of the sampling distribution of the Moran-I statistics.

Another simulated dataset

Marco A. R. Ferreira OBayes for hierarchical models with ICAR priors

Hierarchical model with ICAR prior

Literature review

Sum-zero constrained ICAR prior

Objective priors

Simulation Study

Application: foreclosures and unemployment in OH in 2012

Application: foreclosures and unemployment in OH in 2012

- ▶ We consider a data set containing foreclosure rates as a proportion of all housing transactions for each of the 88 counties in the state of Ohio for the year 2012.
- ▶ Let SMR_i = O_i/E_i, where O_i is the observed number of foreclosures in county i and E_i is the expected number of foreclosures in county i.
- ► The expected counts are calculated by $E_i = n_i \left(\sum_j O_j / \sum_j n_j \right)$, where n_i is the total number of housing transactions in county *i*.
- We consider y_i = log(SMR_i) as the response variable and unemployment rate as a covariate.

Marco A. R. Ferreira OBayes for hierarchical models with ICAR priors

- 1.05

Prior	Parameter	Estimate	95% Credible Interval
Reference	eta_0 (intercept)	-0.5561	(-0.9388, -0.1710)
	eta_1 (unemployment rate)	0.0488	(0.0008, 0.0967)
	$ au_{c}$	0.2519	(0.0017, 0.9781)
	σ^2	0.0432	(0.0046, 0.0854)
CARBayes	eta_0 (intercept)	-0.5612	(-0.9482, -0.1708)
	eta_1 (unemployment rate)	0.0496	(0.0009, 0.0977)
	$ au_{c}$	0.1959	(0.0009, 1.0231)
	σ^2	0.0385	(0.0013, 0.0819)
NB	eta_{0} (intercept)	-0.5687	(-0.9516, -0.1802)
	eta_1 (unemployment rate)	0.0504	(0.0020, 0.0985)
	$ au_{c}$	0.1589	(0.0010, 0.6290)
	σ^2	0.0345	(0.0019, 0.0755)

Table: Foreclosures and unemployment in OH in 2012 – FBF-based posterior model probabilities

Model	Posterior Probability
Spatial Model intercept only	0.3603
Spatial Model with unemployment rate	0.6372
Independent Model intercept only	0.0019
Independent Model with unemployment rate	0.0006

- Say we want to identify counties with risk higher than predicted by the regressors.
- A common decision rule would be to flag counties for which $P(\phi_i > 0 | \mathbf{Y}) > 0.95$.
- For the OH dataset, the reference, CARBayes, and NB analyses identify 3, 4, and 9 counties respectively.

Hierarchical model with ICAR prior

Literature review

Sum-zero constrained ICAR prior

Objective priors

Simulation Study

Application: foreclosures and unemployment in OH in 2012

- Objective Bayesian analysis for a widely used Gaussian hierarchical model with ICAR prior for spatial data.
- Compared to two commonly used priors, the reference prior leads to a combination of favorable frequentist coverage, average interval length, and mean squared error.
- ▶ R package ref.ICAR available on CRAN (Porter et al., 2019).
- The reference prior proposed here leads to a proper posterior distribution and lets the data speak for themselves.