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Motivating example

Motivating example: foreclosures and unemployment in
OH in 2012

Foreclosure rates Unemployment rates
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Motivating example

CAR Neighborhood Structure
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Hierarchical model with ICAR prior

Hierarchical model with ICAR prior

Y = Xβ + θ + φ,

where

I Y is the n × 1 vector containing the response variable.

I X is a n × p matrix of covariates.

I β is the p × 1 vector of regression coefficients.

I θ = (θ1, . . . , θn)′ is a vector of unstructured random effects
such that θ1, . . . , θn iid N(0, σ2).

I φ = (φ1, . . . , φn)′ is a vector of spatial random effects
following a sum-zero constrained intrinsic CAR prior.

I θ and φ are assumed independent a priori.
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Hierarchical model with ICAR prior

Technical difficulty

I To obtain a reference prior for a spatial hierarchical model, we
have to first integrate out the spatial random effects.

I This integral operation can only be performed when the
spatial random effects have a well-defined distribution.

I Usual improper intrinsic CAR random effects do not have a
well-defined distribution.

I That is probably the reason why a reference prior for this
widely used spatial hierarchical model has not been published
to date.
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Literature review

Brief literature review

I CAR specifications for modeling areal data (Besag, 1974).

I Intrinsic CAR model as a prior for spatial random effects
(Besag, York and Mollié, 1991).

I Comprehensive coverage of Gaussian Markov random fields
(Rue and Held, 2005).

I Comprehensive coverage of hierarchical models for spatial
data (Banerjeee, Carlin and Gelfand, 2014).
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Literature review

Brief literature review

I OBayes for proper CAR to model observed areal data (Ferreira
and De Oliveira, 2007; De Oliveira, 2012; Ren and Sun, 2013).

I OBayes analysis for geostatistical models (Berger et al, 2001;
De Oliveira, 2007).

I OBayes for hierarchical models for areal data with proper CAR
priors (Ren and Sun, 2014).
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Sum-zero constrained ICAR prior

CAR Neighborhood Structure
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Sum-zero constrained ICAR prior

Improper Intrinsic CAR Models

The intrinsic CAR model for a vector ω = (ω1, ω2, . . . , ωn)T is
specified by its conditional distributions

p(ωi |ω∼i ) ∝ exp

−τω2
 n∑

i=1

ω2
i hi − 2

∑
i<j

ωiωjgij

 ,

where

I ω∼i is the vector of the CAR elements for all subregions
except subregion i ;

I τω > 0 is a precision parameter;

I gij ≥ 0 is a measure of how similar subregions i and j are,

gij = gji , and hi =
n∑

j=1
gij .
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Sum-zero constrained ICAR prior

Improper Intrinsic CAR Models

Alternatively, we may write the joint density for ω as

p(ω) ∝ exp
{
−τω

2
ωTHω

}
,

where H is a symmetric, positive semi-definite precision matrix
defined as

(H)ij =


hi , if i = j

−gij , if i ∈ Nj

0 otherwise.
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Sum-zero constrained ICAR prior

Sum-zero constrained ICAR prior

I Start with a vector of proper CAR random effects.

I Project this vector of random effects onto the subspace of Rn

that is orthogonal to the subspace spanned by the vector
n−1/21n.

I Take the limit to get a sum-zero constrained ICAR.
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Sum-zero constrained ICAR prior

Proper CAR (Ferreira and De Oliveira, 2007)

We use a signal-to-noise ratio parametrization to express the
proper CAR as

φ∗∗ ∼ N

(
0,
σ2

τc
Σλ

)
,

where

I σ2 and τc > 0 are unknown parameters,

I λ > 0 is a propriety parameter,

I Σ−1λ = λIn + H,

I When λ→ 0 we get the improper intrinsic CAR.
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Sum-zero constrained ICAR prior

Sum-Zero Constrained Proper CAR

I We define φ∗ = Pφ∗∗, where P =
(
In − n−11n1

T
n

)
is a

centering (projection) matrix.

I The distribution of φ∗ is given by

φ∗ ∼ N

(
0,
σ2

τc
Σφλ

)
,

where Σφλ = PΣλP
T .

I By construction,
∑n

i=1φ
∗
i = 0.
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Sum-zero constrained ICAR prior

Sum-Zero Constrained ICAR

I Now we take the limit as λ→ 0 to obtain the final
distribution for φ given by

φ ∼ N

(
0,
σ2

τc
Σφ

)
,

I Σφ = lim
λ→0

Σφλ = QMQT ,

I M = diag
(
d−11 , . . . , d−1n−1, 0

)
,

I d1 ≥ · · · ≥ dn−1 > dn = 0 are the ordered eigenvalues of H

I Thus Σφ = H+ is the Moore-Penrose generalized inverse of H.
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Sum-zero constrained ICAR prior

Sum-zero constrained ICAR prior (Keefe et al, 2018)

p(φ) = (2π)(n−1)/2τ
(n−1)/2
c

(
n−1∏
i=1

di

)1/2

exp
{
− τc

2σ2
φ′Hφ

}
1(φ′1 = 0)
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Sum-zero constrained ICAR prior

Compare to the Improper Intrinsic CAR

p(ω) ∝ exp
{
−τω

2
ωTHω

}
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Sum-zero constrained ICAR prior

Facts about the Sum-Zero Constrained ICAR

I Keefe et al (2018) consider proper CAR models with
Σ−1λ = λK + H.

I Let K be a symmetric positive semi-definite matrix for which
the sum of its elements is positive.

I Keefe et al (2018) shows that for any matrix K in this class,
the sum-zero constrained intrinsic CAR model does not
depend on K and is, therefore, unique.
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Sum-zero constrained ICAR prior

Facts about the Sum-Zero Constrained ICAR

I The singular Gaussian distribution N(0, τ−1H+) is the
stationary distribution of a one-at-a-time Gibbs sampler
applied to the improper ICAR prior with centering on the fly
(Ferreira, 20XXa).

I Centering spatial random effects ω simulated from the full
conditional distribution implied by the improper ICAR is
equivalent to simulating from the full conditional distribution
for φ implied by the N(0, τ−1H+) prior (Ferreira, 20XXb).

I Therefore, our reference prior is directly applicable to
Gaussian hierarchical models with intrinsic CAR priors widely
used in practice.
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Objective priors

Objective priors

All of the objective priors we have derived fall into a class of priors
of the form

π(β, σ2, τc) ∝ π(τc)

(σ2)a
,

where a ∈ R is a hyperparameter and π(τc) is referred to as the
marginal prior for τc .
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Objective priors

Reference prior

I Let G ∗ = In − X (X ′X )−1X ′.

I Let Q∗ be the matrix with columns that are the normalized
eigenvectors corresponding to the non-zero eigenvalues of G ∗.

I Let ξ1 ≥ ξ2 ≥ · · · ≥ ξn−p > 0 be the ordered eigenvalues of
Q∗′H+Q∗.
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Objective priors

Reference prior

The reference prior has a = 1 and

πR(τc) ∝ 1

τc

n−p∑
j=1

(
ξj

τc + ξj

)2

− 1

n − p


n−p∑
j=1

(
ξj

τc + ξj

)
21/2

.

(Keefe, Ferreira, and Franck, 2019)
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Objective priors

Posterior propriety

(i) The posterior πR(β, σ2, τc |y ,X ) resulting from the reference
prior πR(τc) is proper.

(ii) The kth moment of the marginal reference posterior
πR(τc |y ,X ) does not exist for k ≥ 1.

(iii) The independence Jeffreys prior leads to an improper posterior
distribution.

(iv) The Jeffreys-rule prior leads to an improper posterior
distribution.
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Simulation Study

Comparison of Priors

Competing priors:

I CARBayes package (version 4.0) has implemented
gamma(0.001, 0.001) prior distributions as the default for
both precision parameters.

I Best et al (1999) has used gamma(0.001, 0.001) and
gamma(0.1, 0.1) prior distributions for the precisions of the
unstructured and spatial random effects, respectively.

Performance is assessed using:

I frequentist coverage of credible interval.

I average interval length (IL).

I mean squared error (MSE).
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Simulation Study

Comparison of Priors
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Simulation Study

KL divergence between the spatial model and the
independent model
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Simulation Study

Simulation Design

I Square regions with sample sizes n = 52, 72, 102.

I σ2 = 2.

I τc = 0.01, 0.032, 0.1, 0.32, 1, 3.2, 10.

I First- and second-order neighborhood structure.

I p = 1 (intercept only) with β = 1;
and p = 6 with β = (−3,−2,−1, 1, 2, 3)′.

I All covariates are generated from a normal distribution with
mean 0 and variance 1.

I We generate results based on 1,000 simulated data sets for
each combination of these levels of n, τc , neighborhood
structure, and p.
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Simulation Study

Frequentist coverage and mean interval length for τc

n=100 n=49 n=25
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Simulation Study

MSE for the posterior median of τc
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Simulation Study

One simulated dataset

I Dataset simulated with a first-order neighborhood structure,
square regular grid, n = 49, and parameters β = 1, σ2 = 2,
and τc = 0.1.

I The posterior medians of τc are equal to 1.0, 2.2, and 3.2 for
the reference, NB, and CARBayes analyses, respectively.

I Contours correspond to HPD regions with credible levels equal
to 10%, 20%, . . ., 90%.
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Simulation Study

One simulated dataset

(a) Integrated likelihood (b) Reference posterior

(c) NB posterior (d) CARBayes posterior
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Simulation Study

One simulated dataset

I We have found empirically that the probability of such a bad
integrated likelihood behavior increases as the Moran-I
statistic decreases.

I For this particular dataset, the Moran-I statistic is equal to
0.203 with a corresponding p-value of 0.0181 (null hypothesis
is of no spatial dependence).

I This is not an extreme dataset; under the conditions used to
simulate this dataset, the probability of the Moran-I statistic
being less than 0.203 is about 0.12.
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Simulation Study

Another simulated dataset

I We now consider a dataset simulated under the same
conditions as the previous dataset, but with a Moran-I
statistic of moderate size.

I Specifically, for this dataset the Moran-I statistic is equal to
0.363 with a corresponding p-value of 0.00017 (null
hypothesis is of no spatial dependence).

I This Moran-I statistic is close to the median of the sampling
distribution of the Moran-I statistics.
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Simulation Study

Another simulated dataset

(a) Integrated likelihood (b) Reference posterior

(c) NB posterior (d) CARBayes posterior
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Application: foreclosures and unemployment in OH in 2012

Application: foreclosures and unemployment in OH in 2012

I We consider a data set containing foreclosure rates as a
proportion of all housing transactions for each of the 88
counties in the state of Ohio for the year 2012.

I Let SMRi = Oi/Ei , where Oi is the observed number of
foreclosures in county i and Ei is the expected number of
foreclosures in county i .

I The expected counts are calculated by

Ei = ni

(∑
j
Oj/
∑
j
nj

)
, where ni is the total number of

housing transactions in county i .

I We consider yi = log(SMRi ) as the response variable and
unemployment rate as a covariate.
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Application: foreclosures and unemployment in OH in 2012

Foreclosures and unemployment in OH in 2012

SMRs unemployment

Posterior median Posterior s.d.
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Application: foreclosures and unemployment in OH in 2012

Foreclosures and unemployment in OH in 2012

Prior Parameter Estimate 95% Credible Interval

Reference

β0 (intercept) -0.5561 (-0.9388, -0.1710)

β1 (unemployment rate) 0.0488 (0.0008, 0.0967)

τc 0.2519 (0.0017, 0.9781)

σ2 0.0432 (0.0046, 0.0854)

CARBayes

β0 (intercept) -0.5612 (-0.9482, -0.1708)

β1 (unemployment rate) 0.0496 (0.0009, 0.0977)

τc 0.1959 (0.0009, 1.0231)

σ2 0.0385 (0.0013, 0.0819)

NB

β0 (intercept) -0.5687 (-0.9516, -0.1802)

β1 (unemployment rate) 0.0504 (0.0020, 0.0985)

τc 0.1589 (0.0010, 0.6290)

σ2 0.0345 (0.0019, 0.0755)
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Application: foreclosures and unemployment in OH in 2012

Foreclosures and unemployment in OH in 2012

Table: Foreclosures and unemployment in OH in 2012 – FBF-based
posterior model probabilities

Model Posterior Probability

Spatial Model intercept only 0.3603

Spatial Model with unemployment rate 0.6372

Independent Model intercept only 0.0019

Independent Model with unemployment rate 0.0006
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Application: foreclosures and unemployment in OH in 2012

Foreclosures and unemployment in OH in 2012

I Say we want to identify counties with risk higher than
predicted by the regressors.

I A common decision rule would be to flag counties for which
P(φi > 0|Y ) > 0.95.

I For the OH dataset, the reference, CARBayes, and NB
analyses identify 3, 4, and 9 counties respectively.
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Conclusions

Conclusions

I Objective Bayesian analysis for a widely used Gaussian
hierarchical model with ICAR prior for spatial data.

I Compared to two commonly used priors, the reference prior
leads to a combination of favorable frequentist coverage,
average interval length, and mean squared error.

I R package ref.ICAR available on CRAN (Porter et al., 2019).

I The reference prior proposed here leads to a proper posterior
distribution and lets the data speak for themselves.
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