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3 Background

• Dynamic material properties experiments: access to the
most extreme temperatures and pressures attainable.

• Sandia National Labs Z-machine: pulsed power driver that
can deliver massive electrical currents over very short
timescales (of the order of 60MA over 1µs) ).

• Goal: Understanding of material models at extreme
conditions by coupling computational simulations with
experimental data.
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4 Background

• Goal: Generalized solution for calibrating dynamic material
models.

• Physicists: ideally want a solution that does not necessarily
require a statistician in the loop.

• Parameters of interest are physical: material properties with
”true” value that is of interest.

• Ideally: robust algorithm for UQ parameter calibration.
• Firstly: Calibrate a well-understood model - two parameters
of the equation of state of tantalum.
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5 Experimental setup

• ”By coupling experimental and simulated velocity traces,
parameters of the tantalum (Ta) equation of state (EOS) can be
estimated”.

• Massive electric currents treated as boundary conditions.
• Stress wave propagates thru system.
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6 Calibration

• Uncertain inputs generate velocity curves using a computer model.
• Probability distributions look for ”agreement” of outputs and
measurements.

• Bayesian framework is a natural in this context...
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7 Challenges

• How to accurately estimate uncertainties?
• Calibration parameters have physical interpretation.
• Lots of nuisance parameters.
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8 Approach

• Bayesian Model Calibration (BMC) (Kennedy & O’Hagan 2001)
often used to “tune” computer model.

• Calibrated model for prediction (interpolation).
• Partitioned into physical parameters and nuisance
parameters.
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9 Approach

• Kennedy & O’Hagan 2001 model,

y(xi) = η(xi,θ) + δ(xi) + εi

εi
iid∼ N(0, σ2)

δ(·) ∼ GP(µδ,Σδ)

• xi are known inputs (experiment test conditions, time)
• θ = (α,γ) are calibration parameters.
• η is the true value of the outcome as a function of x and θ.
• εi is a measurement error.
• δ(·) is a discrepancy function term.
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10 Our Framework

• We model the ith observation in the jth experiment as,

y(xij) = η(xij,α,γj) + δ(xij) + εij

• α are the (unknown) values of the calibration parameters.
• γj unknown values of experimental uncertainties for
experiment j.

• y(xij) is the observed velocity at time xij.
• η(xij,α,γj) is the computer model output at xij.
• δ(xij) is a G-P discrepancy term.
• εij are measurement uncertainties at xij.
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11 Dynamic material property calibration

• BMC framework to obtain inference for two material
properties of Tantalum.

• B0 and B′0 are the Bulk modulus of tantalum and its pressure
derivative.

α = (α1, α2) = (B0,B′0)
• Four nuisance that may vary across p = 9 experiments

• Tantalum density - γ1
• Magnetic field scaling - γ2j, j = 1, 2, · · · 9
• Aluminum thickness- γ3j, j = 1, 2, · · · 9
• Tantalum thickness - γ4j, j = 1, 2, · · · 9

• Potential for overfitting and lack of identifiability.
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12 Issues

• Model can fit well to data, solutions far from true parameter
values.

• Can we diagnose such overfitting? Can we mitigated it?
• Model discrepancy can reduce the identifiability of the
calibration parameters.
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13 Model Discrepancy

• Without strong assumptions about discrepancy, KOH should
not be expected to provide correct inferences.

• δ() and θ are not jointly identifiable (Loeppky et al., 2006;
Arendt et al., 2012; Brynjarsdóttir and OH́agan, 2014; Tuo and
Wu, 2016).

• Robust alternatives to G-P discrepancy?
• Brown and Hund (2018) use power likelihoods.

p(θ|Y) ∝ exp (−wl(Y|θ))p(θ)

• Problems with fewer experimental curves and more nuisance
parameter are harder.

• Time series models?
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14 Nuisance parameters and overfitting

• Aluminum and Tantalum thickness parameters: These
nuisance parameters are measured with a device which we
beleive to be well registered.

• Measurement error is exclusive source of uncertainty. The
prior mean and variance of these nuisance parameters are
well known.

• Nuisance parameters are standardized (mean 0, variance 1).
• The standard informative (SI) prior is:

(γk1, γk2, · · · γk9) ∼ N(0, I9), k = 2, 3, 4

• “True values” are expected to look like a draw from a N(0, I9)
distribution.
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15 Nuisance parameters and overfitting

• Three types of overfitting:
• Overdispersion: Posterior estimates are collectively too
large.

• Indicates a “calibration solution”. Good fit to data but
scientifically unreasonable.

• Standard informative prior usually prevents this from
occurring.

• Underdispersion: Posterior estimates are collectively too
close to 0.

• Can lead to underestimation of uncertainty in α.
• Standard informative prior will not address this case.

• Collective Bias: The posterior estimates are collectively
biased (i.e. all are negative).

• Indicates a systematic bias across experiments.
• Can lead to biased estimates of α to compensate.
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16 Collective Bias for 2 nuisance-sets

• Left: No grouping occurs.
• Right: Collective bias implies systematic overfitting across
experiments.

• Standard prior assigns same values.
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17 A metric for overfitting

• We define,

Mγ =
1

p

p∑
j=1

γj Vγ =
1

p− 1

p∑
j=1

(
γj −Mγ

)2
• Prior beliefs about problem structure suggests:

Mγ ≈ 0 Vγ ≈ 1

• Under standard normal,

πMγ ,Vγ (m, v) = N(m | 0, 1/p)×
[
(p− 1)χ2(v(p− 1) | p− 1)

]
• Reasonable to check that the estimates M̂γ and V̂γ are
coherent with prior.
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18 A metric for overfitting
• Definition: We say that (m, v) is more coherent with the prior
than (m′, v′) if

πMγ ,Vγ (m, v) > πMγ ,Vγ (m′, v′)

• Define the set of all points which are less coherent with the
prior than (M̂γ , V̂γ)

ΓM̂γ ,V̂γ =
{
(m, v) | πMγ ,Vγ (M̂γ , V̂γ) > πMγ ,Vγ (m, v)

}
• Probability of prior coherency of (M̂γ , V̂γ)

pc(M̂γ , V̂γ) =
∫
ΓM̂γ,V̂γ

πMγ ,Vγ (m, v) dmdv

≈ 1

L

L∑
`=1

1

(
πMγ ,Vγ (M̂γ , V̂γ) > πMγ ,Vγ (m`, v`)

)
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19 Diagnostic plot for simulated case p = 10

• Orange: Point estimates and posterior draws of (Mγ , Vγ)
• Blue: Prior probability contours.
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20 The moment penalization prior

• Overfitting of nuisance parameters leads to (M̂γ , V̂γ) with low
prior coherency.

• The moment penalization (MP) prior penalizes solutions with
low prior coherency.

• Let ha(x) be a function which takes larger values when x is
close to a.

πMPγ (γ) ∝ h0(Mγ)h1(Vγ)

• Tries to encourage solutions with

Mγ ≈ 0 Vγ ≈ 1
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21 The moment penalization prior

• Simple and effective choice for ha(x): Gaussian kernels

πMPγ (γ) ∝ exp
[
−λ1M2

γ

]
exp

[
−λ2(Vγ − 1)2

]
• λ1 and λ2 control how strongly we want to enforce
constraints.

• Reparameterize: ω1 = 2Var(Mγ)λ1 and ω2 = 2Var(Vγ)
• Write γ ∼ MP(ω1, ω2) to mean that,

πMPγ (γ) ∝ exp
[
−pω1

2
M2

γ

]
exp

[
−(p− 1)ω2

4
(Vγ − 1)2

]
• γ ∼ MP(1, 1) is the standard moment penalization prior.
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22 Samples from the Standard MP prior

• 10, 000 draws via M-H for p = 2.
• As ω → ∞ all density is placed on ±(1/

√
2,−1/

√
2)

• As p grows, the induced marginal priors become N(0, 1).
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23 Moment penalization in the limit

• Z-Regularization: Consider a set of p latent variables Z.

Z1, · · · Zp
iid∼ N(0, 1)

γk =
Zk − Z̄
SZ

• We enforce that Mγ = 0 and Vγ = 1.
• This approximates the limit situation for MP(ω1, ω2)

ω1 → ∞; ω2 → ∞.

• As p increases, marginal prior on γk goes to N(0, 1).
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24 Z-Regularization: Marginal prior on γk
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25 Data informed regularization

• The MP prior harnesses the known structure of the problem
and forces each group to behave reasonably.

• Not appropriate for all cases, and a more general form of
regularization is required.

• We consider the class of Global-Local Gaussian scale
mixtures:

• For k = 1, · · ·p,

γk | (τ, ψk)
ind∼ N(0, τψk)

τ ∼ g() and ψk ∼ gk()

• Commonly used in sparse linear model settings.
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26 Data informed regularization

• Horseshoe prior is obtained by setting

τ ∼ C+(0, σ) and ψk ∼ C+(0, σk)

• Shrink globally: When regularization is required, global
parameter τ becomes very small.

• Act locally: Active components are selected by allowing ψk to
become very large.

• If p is large, this can significantly increase the cost of BMC.
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27 Example: The simple machine

• Brynjarsdottir and O’Hagan (2014): The simple machine
delivers work

ζ(x) = E x
1 + x/20

• x is the amount of effort put into the machine.
• E is the efficiency of the machine.
• Denominator accounts for loss of work due to friction.

• The naive simulator introduces model discrepancy

η(x, E) = Ex
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28 Example: The simple machine
• We consider p = 10 simple machines, and introduce base
efficiency Gj as a machine-dependent nuisance parameter.

• Inputs x1, x2, · · · xn evenly spaced over [1, 4]
• Data generating process:

yij = Gj +
E xi

1 + xi/20
+ εi

Gj ∼ N(0, 0.052)
εi ∼ N(0, 0.012)

• Naive simulator:
η(x, E,G) = G+ E x

• True efficiency is E = 0.65. Standardize parameters:

α =
E − 0.65

0.3
∼ N(0, 1) γk =

Gk − 0

0.05
∼ N(0, 1)
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29 Example: The simple machine

• Model discrepancy leads to systematic bias.
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30 Example: The simple machine

• Under standard informative prior
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31 Example: The simple machine

• Under moment penalization prior
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32 Example: The simple machine

• Posterior inference improves under MP, but is still far from
truth.

• This is still valuable information! Model discrepancy is
leading to biased inference on the parameter of interest.4/17/19



33 Example: Borehole function

• Models water flow through a borehole (An & Owen, 2001;
Harper & Gupta, 1983)

• The true process,

ζ(x,θ) = 2πTu∆H

ln(r/rw)
(
1 + 2LTu

ln(r/rw)r2wKw
+ Tu

Tl

)
• Most of the inputs are treated as known

• r, Tu, Tl,∆H fixed at usual values (Surjanovic & Bingham, 2017).
• Compare the moment penalization prior to the standard
informative prior.
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34 Example: Borehole function

• x = L known input where L is the length of the borehole
(meters).

• The input rw , radius of the borehole (nuisance parameter),

γ =
rw − 0.1

0.0161812
∼ N(0, 1)

• The physical parameter Kw , hydraulic conductivity of the
borehole (meters per year).

α =
Kw − 10950

632.2
∼ N(0, 1)

• A low fidelity simulator,

η(x,θ) = 2πTu∆H

ln(r/rw)
(
1.5 + 1.4LTu

ln(r/rw)r2wKw
+ Tu

Tl

)
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35 Example: Borehole function
Diagnostic plot
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36 Example: Borehole function
Estimation of nuisance parameters
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37 Example: Borehole function
Simulation study

• p = 5, n = 10.
• α? ∈ {−1, 0, 2}.
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38 Example: Borehole function
Simulation study

• Posterior inference on α gets worse as inference on nuisance
parameters improves.

• Still valuable information! Model discrepancy is leading to
biased inference on the parameter of interest.
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39 Dynamic material property calibration
revisited

• Inference for two material properties of Tantalum.
• B0 and B′0 are the Bulk modulus of tantalum and its pressure
derivative.

α = (α1, α2) = (B0,B′0)
• Four nuisance that may vary across p = 9 experiments

• Tantalum density - γ1
• Magnetic field scaling - γ2j, j = 1, 2, · · · 9
• Aluminum thickness- γ3j, j = 1, 2, · · · 9
• Tantalum thickness - γ4j, j = 1, 2, · · · 9

• Perform BMC for SI, SMP and MP(20, 40) priors.
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40 Dynamic material property calibration
Diagnostic plots
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41 Dynamic material property calibration
Physical parameter posteriors

• Similar posterior inference in all cases.
• Indicates that model discrepancy is unlikely to be causing
bias in the parameters of interest.
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42 Conclusions

• Overfitting of nuisance parameters leads to systematic bias
which is often a symptom of model discrepancy.

• In complex high-dimensional problems, with appropriate
problem structure, we can:

• Identify: Probability of prior coherency identifies many types
of overfitting, should it occur.

• Reduce: The moment penalization prior reduces the
systematic bias of the nuisance parameters.

• Diagnose: Examine the sensitivity of posterior inference in
order to diagnose the presence and effect of model
discrepancy on the parameters of interest.
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44 Selection of Hyper-parameters

• Adequacy of prior depends on selection of ω1 and ω2.
• Update or estimate with MAP. Weakly informative priors
allow likelihood to dominate the selection. Problem of
overfitting may not be addressed.

• Cross validation. Prediction or posterior based criteria leads
to overfitting. Computationally difficult.

• Sequential approach: Use the diagnostic plot to increase ω1

and ω2 sequentially until prior coherency is reasonable.
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45 Comparison: SI vs SMP

• For a given set of p nuisance parameters (γ1, · · · γp) we
compute:

logπSI(γ) =
10∑
k=1

log (N(γk | 0, 1)) = −1

2
log(2π)−

10∑
k=1

γ2k
2

logπMP(γ) = c − pω1

2
(Mγ)

2 − (p− 1)ω2

4

(
V(m)
γ − 1

)2

where Mγ and Vγ denote the mean and variance of γ .
• Think about these prior log-densities as penalties (small
values) and rewards (large values).

• Compare penalty assigned by each prior over a wide range of
potential nuisance sets.
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46 Comparison: SI vs SMP

• Compare penalty assigned by each prior over a wide range of
potential nuisance sets.

• No overfitting: Consider candidates for which overfitting is
unlikely to be present. γ ∼ N(0, I10).

• Overdispersion: Explore regions of the nuisance space in
which magnitude of nuisance parameters is larger than
expected. γ ∼ N(0, 4 I10).

• Underdispersion: Magnitude is smaller than expected.
γ ∼ N(0, 14 I10).

• Collective Bias: We explore regions where nuisance
parameters are collectively biased compared to our
expectations. γ ∼ N(−1, I10)
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47 Comparison: SI vs SMP
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