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NonGaussian Multivariate Time Series

Earlier Bayesian work goes back to early 1990s.

Grunwald, Raftery and Guttorp (1993, JRSSB): Dirichlet time
series of proportions.

Ord, Fernandes and Harvey (1993): Multivariate counts.

Cargnoni, Muller and West (1997, JASA): Multinomial time
series.

Recent interest in discrete valued time series and count data:

Handbook of Discrete Valued Time Series by Davis et al. (2015).
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Modeling Correlations in Multivariate Time Series

Modeling temporal correlations.

Cox (1981) classifies time series models into observation and
parameter driven processes.

Modeling contemporaneous correlations.

Common strategies: Marshall and Olkin (1988, JASA)

1 Modeling via conditionals Arnold et al. (1992, 2001 StatSci).

2 Common environment models: Generation of dependence via
mixtures [Arbous and Kerrich (1951, Biometrics) and Lindley
and Singpurwalla (1986, JAP)].
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Multivariate Time Series of Counts

Observation driven models:

Multivariate INAR models: Pedeli and Karlis (2011,
StatMod), Pedeli and Karlis (2012, JTSA).

Multivariate Poisson Series: Ravishanker et al. (2014,
StatInt), Serhiyenko et al. (2017, ASMB)

Parameter driven (state-space) models:

Ord et al. (1993) and Jorgensen et al. (1999, Biometrika)

Chen et al. (2016, JASA), Berry and West (2018):
”Decouple/recouple”

Aktekin, Polson and Soyer (2018, BA): ”random environment”
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A Family of Multivariate State Space Models

Consider J component multivariate time series Yjt ’s,
j = 1, . . . , J, subject to a common environment such that
[Gamerman et al. (2013)]

p(Yjt |θt , λj ,ν) = f (Yjt , λj ,ν)θ
g(Yjt ,ν)
t exp{−θth(Yjt , λj ,ν)},

where θt ’s, λj ’s, and ν are three sets of model parameters and
the functions f (.), g(.), and h(.) are specified so that we have
a proper density.

θt represents the effect of the common random environment
on each component at time t.

Both λj ’s and ν represent static effects where λj ’s are
component specific and ν may include common as well as
specific effects.
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Joint Model

We assume that, conditional on θt ’s, λj ’s, and ν, Yjt are
independent over time.

Also, assume that, conditional on θt ’s, λj ’s, and ν,
components Yjt are independent of each other at time t.

Thus, for Y t = {Y1t , . . . ,YJt} we can obtain

p(Y t |θt ,λ,ν) =

J
∏

j=1

p(Yjt |θt , λj ,ν)

and the general form can be written as

p(Y t |θt ,λ,ν) = f (Y t ,λ,ν)θ
g(Y t ,ν)
t exp{−θth(Y t ,λ,ν)},

where λ = {λ1, . . . , λJ}.
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Evolution of θt ’s

Environmental process {θt} follows a Markovian evolution:
Bather (1965), and Smith and Miller (1986).

θt =
θt−1

γ
ǫt ,

where

(ǫt |D
t−1,λ,ν) ∼ Beta[γαt−1, (1− γ)αt−1]

0 < γ < 1, and Dt = (Dt−1,Y t).

γ acts as a discount factor such that θt <
θt−1

γ .

It can be shown that

(θt |θt−1,D
t−1,λ,ν) ∼ Beta[γαt−1, (1− γ)αt−1; (0,

θt−1

γ
)],

is a scaled Beta density over (0, θt−1/γ)
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Conditional Filtering Density

With (θt−1|D
t−1,λ,ν) ∼ Gamma(αt−1, βt−1), the forecast

distribution of θt can be obtained as

(θt |D
t−1,λ,ν) ∼ Gamma(γαt−1, γβt−1).

Starting at time 0 with (θ0|D0) ∼ Gamma(α0, β0), the
posterior density of θt at time t can be obtained as

(θt |D
t ,λ,ν) ∼ Gamma(αt , βt),

where

αt = γαt−1 + g(Y t ,ν)

βt = γβt−1 + h(Y t ,λ,ν)
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Dynamic Multivariate Distributions

By integrating out the environment we can obtain the
distribution of Y t given the past data and the static
parameters

p(Y t |D
t−1,λ,ν) =

Γ[γαt−1 + g(Y t ,ν)]f (Y t ,λ,ν)(γβt−1)
γαt−1

Γ(γαt−1)[γβt−1 + h(Y t ,λ,ν)]γαt−1+g(Yt ,ν)
.

which is a dynamic multivariate distribution.

The above provides us with dynamic multivariate
generalizations of known distributions such as multivariate
negative binomial, multivariate Lomax, multivariate beta
prime (multivariate generalized Lomax), multivariate Burr
(compound Weibull).
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Modeling Multivariate Counts: APS 2018

Consider J different Poisson time series operating in a
common environment such as

Yjt ∼ Pois(λjθt), for j = 1, . . . , J

f (Y t ,λ,ν) = f (Y t ,λ) = (
∏

j

λ
Yjt
j

Yjt !
)

g(Y t ,ν) = g(Y t) =
∑

j Yjt

h(Y t ,λ,ν) = h(Y t ,λ) =
∑

j λj .

For (θt |D
t ,λ) ∼ Gamma(αt , βt), we have

αt = γαt−1 +
∑

j

Yjt .

βt = γβt−1 +
∑

j

λj .
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Distribution of Multivariate Counts

The marginal distributions of Yjt for any j can be obtained as
a negative binomial model.

p(Yjt |λj ,D
t−1) =

(

γαt−1 + Yjt − 1

Yjt

)

(

1−
λj

γβt−1 + λj

)γαt−1
( λj

γβt−1 + λj

)Y

The multivariate distribution p(Y t |λ,D
t−1) is given by

Γ(γαt−1 +
∑

j Yjt)

Γ(γαt−1)
∏

j Γ(Yjt + 1)

∏

j

(

λj

γβt−1 +
∑

j λj

)Yjt
(

γβt−1

γβt−1 +
∑

j λj

)γαt−1

which is a dynamic multivariate negative binomial.

It is a dynamic version of the (bivariate) negative binomial
distribution proposed by Arbous and Kerrich (1951) for
modeling number of accidents.
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Conditional Distributions of Yjt ’s

The conditionals of Yjts will also be negative binomial type
distributions with the dynamic conditional mean (or
regression) of Yjt given Yit for i 6= j is given by

E [Yjt |Yit , λi , λj ,D
t−1] =

λj(γαt−1 + Yit)

(λi + γβt−1)
,

which is linear in Yit .

The bivariate counts are positively correlated with the
correlation is given by

Cor(Yit ,Yjt |λ,D
t−1) =

√

λiλj

(λi + γβt−1)(λj + γβt−1)
.
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Modeling Multivariate Durations

Consider J different Gamma time series operating in a
common environment such as

Yjt ∼ Gamma(φj , λjθt), for j = 1, . . . , J.

f (Y t ,λ,ν) =
∏J

j=1

λ
φj

j Y
φj−1
jt

Γ(φj )

g(Y t ,ν) =
∑

j φj

h(Y t ,λ,ν) =
∑

j λjYjt .

For (θt |D
t ,λ,ν) ∼ Gamma(αt , βt), we have

αt = γαt−1 +
∑

j

φj .

βt = γβt−1 +
∑

j

λjYjt .
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Distribution of Multivariate Durations

The marginal distribution of Yjt ’s can be obtained as a scaled
beta prime density.

p(Yjt |D
t−1,λ,ν) =

Γ(γαt−1 + φj)

Γ(φj )Γ(γαt−1)

Y
φj−1
jt (λj/γβt−1)

φj

(

1 + (λj/γβt−1)Yjt

)γαt−1+
∑

j φj

The multivariate distribution p(Y t |λ,ν ,D
t−1) is given by

Γ(γαt−1 +
∑

j φj)
∏

j=1 Γ(φj )Γ(γαt−1)

∏

j Y
φj−1
jt

∏

j(λj/γβt−1)
φj

(

1 +
∑

j(λj/γβt−1)Yjt

)γαt−1+
∑

j φj

is the dynamic version of the generalized multivariate Lomax
(beta prime) distribution of Nayak (1987).

Case φj = 1 for all j , provides us with dynamic version of
multivariate Lomax distributions of Lindley and Singpurwalla
(1986).
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Conditional Means of Yjt ’s

The dynamic conditional mean (or regression) of Yjt given Yit

for i 6= j is given by

E [Yjt |Yit ,λ,ν ,D
t−1] =

φj(γβt−1 + λiYit)

λj (γαt−1 + φi − 1)
,

which is linear in Yit .

The bivariate durations are positively correlated with the
correlation is given by

Cor(Yit ,Yjt |λ,ν ,D
t−1) =

√

φiφj

(γαt−1 + φi − 1)(γαt−1 + φj − 1)
.

For the Lomax case of φi = φj = 1 this reduces to

Cor(Yit ,Yjt |λ,ν,D
t−1) =

1

γαt−1
,

where γαt−1 > 1.
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Bayesian Analysis of Multivariate Models

Estimation can be done using MCMC (Gibbs sampler) or
Particle Filtering.

If we assume independent gamma priors for λj ’s as

λj ∼ Gamma(aj , bj); j = 1, . . . , J,

then we can obtain

p(λj |θ1, . . . , θt , γ,ν,D
t) ∼ Gamma(ajt , bjt),

where ajt = aj ,t−1 + Yjt and bjt = bj ,t−1 + θt in the negative
binomial and ajt = aj ,t−1 + φj and bjt = bj ,t−1 + θtYjt in the
generalized Lomax cases.

Updating of the discount parameter γ and ν requires a
Metropolis step.
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Bayesian Analysis: Gibbs Sampler

Given T multivariate observations, we can draw from the full
conditional

p(θ1, · · · , θT |λ,ν, γ,D
T )

via forward filtering backward sampling (FFBS) of
Fruhwirth-Schnatter (1994).

p(θT |λ,ν, γ,D
T ) · · · p(θ1|λ,ν, γ,D

1)

This is feasible since

(θt−1|θt ,λ,ν, γ,D
t−1) ∼ Gamma[(1− γ)αt−1, βt−1]

where γθt < θt−1 < ∞, a shifted gamma density.
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Particle Filtering

MCMC is not very attractive for on-line updating of θt ’s since
it needs to be rerun for every new observation.

Due to the availability of conditional distributions of dynamic
θt ’s and the static λj ’s, we have conditional sufficient
statistics which enables us to use particle learning (PL)
approach of Carvalho et al. (2010, Stat. Sci.)

Since the predictive distribution p(Y t+1|θt ,λ,ν,D
t) and the

propogation density p(θt+1|θt ,λ,ν,D
t+1) are available, we

can use the PL approach instead of APF.

The marginal likelihood of γ and ν is available conditional on
λ and thus we can use discrete priors for these in the PF
updating.
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Particle Learning Algorithm

Assume that γ and ν are known and define the conditional
sufficient statistic st = f (st−1, θt ,Y t) where Y t = (Y1t , . . . ,YJt)
and zt = {θt , st ,λ}.

The algorithm can be summarized as:

1 (Resample) {zt}
K
i=1 from z

(i)
t = {θt , st ,λ}

(i) using weights

w
(i)
t ∝ p(Y t+1|z

(i)
t )

2 (Propagate) {θ
(i)
t } to {θ

(i)
t+1} via p(θt+1|z

(i)
t ,Y t+1)

3 (Update) s
(i)
t+1 = f (s

(i)
t , θ

(i)
t+1,Y t+1)

4 (Sample) (λ)(i) from p(λ|s
(i)
t+1)
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Some Remarks on PL

1 In step 1, zt will be stored at each point in time and it only
includes one state parameter (θt), hence eliminating the need
to update all state parameters.

2 In step 3, f (.) represents the deterministic updating of the
conditional sufficient statistic based on the ajt and bjt
recursions.

3 For PL to work, we need p(Y t+1|z
(i)
t ), the predictive

likelihood, for computing the weights in step 1 and

p(θt+1|z
(i)
t ,Yt+1), the propagation density, for step 3.
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Propogation Density and Resampling Weights

The propagation density of PL in step 2 is given by

p(θt+1|θt ,D
t+1,λ,ν) ∝ θ

γαt+g(Y t ,ν)−1
t+1

(

1−
γ

θt
θt+1

)(1−γ)αt

exp{−θt+1h(Y t ,λ,ν)}

which is the density form of the scaled hyper-geometric beta
distribution.

The predictive likelihood p(Y t+1|z
(i)
t ) = p(Y t+1|θt ,λ,ν) is

f (Y t ,λ, ν)
( θt

γ

)g(Y t ,ν) B[γαt + g(Y t ,ν), (1 − γ)αt ]

B[γαt , (1− γ)αt ]
1F1(a

⋆, b⋆, c⋆),

where 1F1(a
⋆, b⋆, c⋆) represents confluent hyper-geometric

function (CHF).
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Updating of Discount Factor γ

For the sequential updating of the γ posterior at each point in
time, we can use the marginal likelihood conditional on λj ’s.

The conditional posterior is given by

p(γ = k |λ,Dt+1) ∝

t+1
∏

i=1

p(Y i |λ,D
i−1, γ = k)p(γ = k),

where p(γ = k) is a discrete uniform prior.

To incorporate the learning of γ to PL, we first estimate the
posterior of γ using the Monte Carlo average based on the
updated samples of λ and then, we resample particles from
this distribution to update f (.) in step 3 of the algorithm.
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Modeling Multivariate Counts: Bayes Analysis 2018

Bayesian Analysis (2018) 13, Number 2, pp. 385–409

Sequential Bayesian Analysis of Multivariate

Count Data

Tevfik Aktekin∗, Nick Polson†, and Refik Soyer‡

Abstract. We develop a new class of dynamic multivariate Poisson count models
that allow for fast online updating. We refer to this class as multivariate Poisson-
scaled beta (MPSB) models. The MPSB model allows for serial dependence in
count data as well as dependence with a random common environment across
time series. Notable features of our model are analytic forms for state propagation,
predictive likelihood densities, and sequential updating via sufficient statistics for
the static model parameters. Our approach leads to a fully adapted particle learn-
ing algorithm and a new class of predictive likelihoods and marginal distributions
which we refer to as the (dynamic) multivariate confluent hyper-geometric neg-
ative binomial distribution (MCHG-NB) and the dynamic multivariate negative
binomial (DMNB) distribution, respectively. To illustrate our methodology, we
use a simulation study and empirical data on weekly consumer non-durable goods
demand.

Keywords: state space, count time series, multivariate poisson, scaled beta prior,
particle learning.
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Illustration: Weekly Grocery Visits of Households

Data: The weekly grocery store visits of 540 Chicago based
households accumulated over 104 weeks.

Only 2 households considered in the illustration.

There is dependence over time and over households
(correlation is about 0.4).

Households are affected by the same random common
environment.

We use independent flat but proper priors for θ0 and λj ’s.

For discount parameter γ we define a discrete uniform prior
defined over (0, 1).
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Weekly Grocery Visits
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Figure: Weekly demand for households 1 (solid red line) and 2 (dashed
line).
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Prediction Intervals
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Posterior density plots of λ1, λ2 and γ
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Posterior Box Plots for the Random Environment
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Modeling Multivariate Durations

Family of Multivariate Non-Gaussian State Space

Models

Tevfik Aktekin
Decision Sciences

University of New Hampshire∗

Nicholas G. Polson
Booth School of Business

University of Chicago

Refik Soyer
Decision Sciences

George Washington University

Abstract

In this paper, we consider the Bayesian analysis of dynamic multivariate non-
Gaussian time series models which include many well-known distributions. A key
feature of our proposed model is its ability to account for correlations across time as
well as across series (contemporary). The proposed modeling approach yields ana-
lytically tractable dynamic marginal likelihoods, a property not typically found out-
side of linear Gaussian time series models. These dynamic marginal likelihoods can
be tied back to known static multivariate distributions such as the Lomax, general-
ized Lomax, and the multivariate Burr distributions. The availability of the marginal
likelihoods allows us to develop efficient estimation methods for various settings us-
ing Markov chain Monte Carlo as well as particle based methods. To illustrate our
methodology, we use simulated data examples and a real application of multivari-
ate time series for modeling the joint dynamics of stochastic volatility in financial
indexes, the VIX and VXN.

Keywords: state space, non-Gaussian, dynamic time series, particle learning, stochas-
tic volatility
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Illustration: Modeling Volatility Market Indices

Monthly time-series of VIX and VXN (October 2012-October
2017)

Highly correlated series.

Consider the bivariate generalized Lomax model.

Parameters φ1 = 1.23 and φ2 = 1.44 are estimated and
treated as fixed.

A 100-point discrete prior used for γ over (0, 1).

We use independent flat but proper priors for θ0 and λj ’s.
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Monthly VIX and VXN
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Posterior Predictive Means versus Actual VIX and VXN
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Behavior of λ1, λ2 and γ
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Posterior Distribution of θt
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Illustration: Multivariate Burr

Consider J conditionally independent Weibull series with
density

p(Yjt |θt , λj , φj ) = θtλjφjY
φj−1
jt exp{−θtλjY

φj

jt }.

The marginal distribution of Yjt given Dt−1 can be obtained
as a Burr density

p(Yjt |D
t−1, λj , φj ) =

λj

γβt−1
φjY

φj−1
jt

(1 +
∑J

j=1
λj

γβt−1
Y

φj

jt )γαt−1+J
.

The multivariate distribution p(Y t |λ,ν ,D
t−1) is given by

Γ(γαt−1 + J)
∏J

j=1
λj

γβt−1
φjY

φj−1
jt

Γ(γαt−1)(1 +
∑J

j=1
λj

γβt−1
Y

φj

jt )
γαt−1+J

.
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Illustration: Regressions of Multivariate Burr

The above distribution is the dynamic version of multivariate
generalized Burr distribution; see Tadikamalla (1980).

When φj = 1, for j = 1, . . . , J it reduces to the dynamic
multivariate Lomax distribution.

An interesting property of the multivariate Burr is the
nonlinearity of the regressions.

For example, we can show that the dynamic conditional mean
E [Yit |Yjt ,λ,ν,D

t−1] is given by

Γ(1 + 1/φi )Γ(γαt−1 + 1− 1/φi )(γβt−1 + λjY
φj

jt )
1/φi

λ
1/φi

i Γ(γαt−1 + 1)
,

which is not linear unless φi = φj = 1.
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Illustration: Simulated Multivariate Burr Data
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Concluding Remarks

Multivariate time series models based on a random
environment were developed.

The multivariate time series family includes members of
generalized-gamma family and the members of time
transformed exponential family.

MCMC and Particle filtering methods with PL can be
developed.

Availability of the propogation density still as a scaled
hyper-geometric beta density and the resampling weights
being in the form of some multivariate confluent
hyper-geometric distribution.

Experience with the Poisson (Aktekin et al. 2018, BA),
gamma and Weibull models (Aktekin et al. 2019).
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