How to recognize a conformally Kähler metric

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

Let (M, g) be a Riemannian four-manifold. Can you find a non–zero function $\Omega : M \rightarrow \mathbb{R}$ such that

\[
\hat{g} = \Omega^2 g
\]
is flat?

Answer: Need $\text{Weyl} = 0$.

Curvature decomposition: $\text{Riemann} = \text{Weyl} + \text{Ricci} + \text{scalar}$.

$\hat{g} = \Omega^2 g$ is Einstein?

Answer: ??? (but lots of necessary conditions are known: e.g. vanishing of the Bach tensor).

$\hat{g} = \Omega^2 g$ is Kähler?

1. $J : T M \rightarrow T M$ is a complex structure: $J^2 = -\text{Id}$ and $[T(1,0), T(1,0)] \subset T(1,0)$, where $T(1,0) = \{ X \in T M \otimes \mathbb{C}, J(X) = iX \}$.

2. $\hat{g}(X,Y) = \hat{g}(JX, JY)$ for any vector fields X, Y.

3. Fundamental two–form $\Sigma(X,Y) = \hat{g}(JX,Y)$ is closed.
Let (M, g) be a Riemannian four-manifold. Can you find a non–zero function $\Omega : M \rightarrow \mathbb{R}$ such that

- $\hat{g} = \Omega^2 g$ is flat?
Let \((M, g)\) be a Riemannian four-manifold. Can you find a non–zero function \(\Omega : M \rightarrow \mathbb{R}\) such that

\[\hat{g} = \Omega^2 g \]

is flat? Answer: Need \(\text{Weyl} = 0\).
Let \((M, g)\) be a Riemannian four-manifold. Can you find a non–zero function \(\Omega : M \rightarrow \mathbb{R}\) such that

\[
\hat{g} = \Omega^2 g
\]

is flat? Answer: Need \(\text{Weyl} = 0\).

Curvature decomposition: \(\text{Riemann} = \text{Weyl} + \text{Ricci} + \text{scalar}\).
Let (M, g) be a Riemannian four-manifold. Can you find a non-zero function $\Omega : M \rightarrow \mathbb{R}$ such that

- $\hat{g} = \Omega^2 g$ is flat? Answer: Need $\text{Weyl} = 0$.
 Curvature decomposition: $\text{Riemann} = \text{Weyl} + \text{Ricci} + \text{scalar}$.

- $\hat{g} = \Omega^2 g$ is Einstein?

Dunajski (DAMTP, Cambridge)
Let \((M, g)\) be a Riemannian four-manifold. Can you find a non–zero function \(\Omega : M \rightarrow \mathbb{R}\) such that

- \(\hat{g} = \Omega^2 g\) is flat? Answer: Need \(\text{Weyl} = 0\).
 Curvature decomposition: \(\text{Riemann} = \text{Weyl} + \text{Ricci} + \text{scalar}\).
- \(\hat{g} = \Omega^2 g\) is Einstein? Answer: ??? (but lots of necessary conditions are known: e.g vanishing of the Bach tensor).
Let (M, g) be a Riemannian four-manifold. Can you find a non–zero function $\Omega : M \rightarrow \mathbb{R}$ such that

- $\hat{g} = \Omega^2 g$ is flat? Answer: Need $\text{Weyl} = 0$. Curvature decomposition: $\text{Riemann} = \text{Weyl} + \text{Ricci} + \text{scalar}$.
- $\hat{g} = \Omega^2 g$ is Einstein? Answer: ??? (but lots of necessary conditions are known: e.g. vanishing of the Bach tensor).
- $\hat{g} = \Omega^2 g$ is Kähler?
Let \((M, g)\) be a Riemannian four-manifold. Can you find a non–zero function \(\Omega : M \longrightarrow \mathbb{R}\) such that

- \(\hat{g} = \Omega^2 g\) is flat? Answer: Need \(\text{Weyl} = 0\).

 Curvature decomposition: \(\text{Riemann} = \text{Weyl} + \text{Ricci} + \text{scalar}\).

- \(\hat{g} = \Omega^2 g\) is Einstein? Answer: ??? (but lots of necessary conditions are known: e.g. vanishing of the Bach tensor).

- \(\hat{g} = \Omega^2 g\) is Kähler?

 1. \(J : TM \rightarrow TM\) is a complex structure: \(J^2 = -\text{Id}\) and

 \[[T^{(1,0)}, T^{(1,0)}] \subset T^{(1,0)}, \text{ where } T^{(1,0)} = \{X \in TM \otimes \mathbb{C}, J(X) = iX\}. \]
Let \((M, g)\) be a Riemannian four-manifold. Can you find a non–zero function \(\Omega : M \rightarrow \mathbb{R}\) such that

- \(\hat{g} = \Omega^2 g\) is flat? Answer: Need \(\text{Weyl} = 0\).
 - Curvature decomposition: \(\text{Riemann} = \text{Weyl} + \text{Ricci} + \text{scalar}\).

- \(\hat{g} = \Omega^2 g\) is Einstein? Answer: ??? (but lots of necessary conditions are known: e.g. vanishing of the Bach tensor).

- \(\hat{g} = \Omega^2 g\) is Kähler?
 1. \(J : TM \rightarrow TM\) is a complex structure: \(J^2 = -\text{Id}\) and
 \[
 [T^{(1,0)}, T^{(1,0)}] \subset T^{(1,0)}, \text{ where } T^{(1,0)} = \{X \in TM \otimes \mathbb{C}, J(X) = iX\}.
 \]
 2. \(\hat{g}(X, Y) = \hat{g}(JX, JY)\) for any vector fields \(X, Y\).
Let (M, g) be a Riemannian four-manifold. Can you find a non–zero function $\Omega : M \rightarrow \mathbb{R}$ such that

- $\hat{g} = \Omega^2 g$ is flat? Answer: Need Weyl $= 0$. Curvature decomposition: $\text{Riemann} = \text{Weyl} + \text{Ricci} + \text{scalar}$.

- $\hat{g} = \Omega^2 g$ is Einstein? Answer: ??? (but lots of necessary conditions are known: e.g vanishing of the Bach tensor).

- $\hat{g} = \Omega^2 g$ is Kähler?
 1. $J : TM \rightarrow TM$ is a complex structure: $J^2 = -\text{Id}$ and $[T^{(1,0)}, T^{(1,0)}] \subset T^{(1,0)}$, where $T^{(1,0)} = \{X \in TM \otimes \mathbb{C}, J(X) = iX\}$.

 2. $\hat{g}(X, Y) = \hat{g}(JX, JY)$ for any vector fields X, Y.

 3. Fundamental two–form $\Sigma(X, Y) = \hat{g}(JX, Y)$ is closed.
Always? No - let's count:

A metric in 2^n dimensions:

$$n(2^n + 1)$$

arbitrary functions of 2^n variables. Diffeomorphisms + conf. rescaling:

$$2^n - 2$$

The general Kähler metric can be locally described by the Kähler potential: there exists a function $K: M \to \mathbb{R}$ and a holomorphic coordinate system $(z_1, ..., z_n)$ such that

$$g = \partial^2 K / \partial z_j \partial z_k dz_j dz_k.$$

The difference between the number of arbitrary functions is $2^n - n - 2$, which is positive if $n > 1$ (every metric in 2D is Kähler).

Obstructions should be given by conformally invariant tensors.
Always? No - lets count:

- A metric in $2n$ dimensions: $n(2n + 1)$ arbitrary functions of $2n$ variables. Diffeormorphisms + conf. rescalling: $2n^2 - n - 1$.
Degrees of freedom

Always? No - let's count:

- A metric in $2n$ dimensions: $n(2n + 1)$ arbitrary functions of $2n$ variables. Diffeomorphisms + conf. rescaling: $2n^2 - n - 1$.

- The general Kähler metric can be locally described by the Kähler potential: there exists a function $K : M \to \mathbb{R}$ and a holomorphic coordinate system (z^1, \ldots, z^n) such that

$$g = \frac{\partial^2 K}{\partial z^j \partial \bar{z}^k} dz^j d\bar{z}^k.$$
Always? No - lets count:

- A metric in $2n$ dimensions: $n(2n + 1)$ arbitrary functions of $2n$ variables. Diffeormorphisms + conf. rescalling: $2n^2 - n - 1$.

- The general Kähler metric can be locally described by the Kähler potential: there exists a function $\mathcal{K} : M \rightarrow \mathbb{R}$ and a holomorphic coordinate system (z^1, \ldots, z^n) such that

$$g = \frac{\partial^2 \mathcal{K}}{\partial z^j \partial \bar{z}^k} dz^j d\bar{z}^k.$$

- The difference between the number of arbitrary functions is $2n^2 - n - 2$, which is positive if $n > 1$ (every metric in 2D is Kähler).
Always? No - lets count:

- A metric in $2n$ dimensions: $n(2n + 1)$ arbitrary functions of $2n$ variables. Diffeormorphisms + conf. rescalling: $2n^2 - n - 1$.

- The general Kähler metric can be locally described by the Kähler potential: there exists a function $\mathcal{K} : M \rightarrow \mathbb{R}$ and a holomorphic coordinate system (z^1, \ldots, z^n) such that

$$g = \frac{\partial^2 \mathcal{K}}{\partial z^j \partial \bar{z}^k} dz^j d\bar{z}^k.$$

- The difference between the number of arbitrary functions is $2n^2 - n - 2$, which is positive if $n > 1$ (every metric in 2D is Kähler).

- Obstructions should be given by conformally invariant tensors.
Summary of results in four dimensions

- One–to–one correspondence between Kähler metrics in the conformal class of g and parallel sections of a certain (canonical) connection \mathcal{D} on a rank ten vector bundle $E = \Lambda^2_+(M) \oplus \Lambda^1(M) \oplus \Lambda^2_-(M)$.

If the self–dual (SD) part of Weyl tensor C^+ of g is non–zero we find the necessary and sufficient conditions: C^+ spinor must be of algebraic type D and $T = 0$, $dV = 0$, where $T \in \Gamma(S \otimes \text{Sym}^5(S'))$, $V \in \Gamma(\Lambda^1(M))$ depend on C^+ and ∇C^+.

If $C^+ = 0$ we get some necessary conditions from the holonomy of the curvature of \mathcal{D}. E.g. A metric with $C^+ = 0$ is conformal to Einstein AND conformal to Kähler if and only if it admits an isometry.

Link with the metrisability problem (Bryant, MD, Eastwood. J. Diff. Geom. 2009): A projective structure on a surface U is metrisable if and only if the induced (2, 2) conformal structure on $M = TU$ admits a Kähler metric or a para–Kähler metric.

Dunajski (DAMTP, Cambridge)
One-to-one correspondence between Kähler metrics in the conformal class of g and parallel sections of a certain (canonical) connection D on a rank ten vector bundle $E = \Lambda^2(M) \oplus \Lambda^1(M) \oplus \Lambda^2(M)$.

If the self-dual (SD) part of Weyl tensor C_+ of g is non-zero we find the necessary and sufficient conditions: C_+ spinor must be of algebraic type D and

$$ T = 0, \quad dV = 0, $$

where $T \in \Gamma(S \otimes \text{Sym}^5(S'))$, $V \in \Gamma(\Lambda^1(M))$ depend on C_+ and ∇C_+.

If $C_+ = 0$ we get some necessary conditions from the holonomy of the curvature of D. E.g. A metric with $C_+ = 0$ is conformal to Einstein AND conformal to Kähler if and only if it admits an isometry.
One-to-one correspondence between Kähler metrics in the conformal class of g and parallel sections of a certain (canonical) connection \mathcal{D} on a rank ten vector bundle $E = \Lambda^2_+(M) \oplus \Lambda^1_-(M) \oplus \Lambda^2_-(M)$.

If the self-dual (SD) part of Weyl tensor C_+ of g is non-zero we find the necessary and sufficient conditions: C_+ spinor must be of algebraic type D and

$$T = 0, \quad dV = 0,$$

where $T \in \Gamma(S \otimes \text{Sym}^5(S'))$, $V \in \Gamma(\Lambda^1_-(M))$ depend on C_+ and ∇C_+.

If $C_+ = 0$ we get some necessary conditions from the holonomy of the curvature of \mathcal{D}. E.g. A metric with $C_+ = 0$ is conformal to Einstein AND conformal to Kähler if and only if it admits an isometry.
Summary of results in four dimensions

- One-to-one correspondence between Kähler metrics in the conformal class of \(g \) and parallel sections of a certain (canonical) connection \(\mathcal{D} \) on a rank ten vector bundle \(E = \Lambda^2(M) \oplus \Lambda^1(M) \oplus \Lambda^2(M) \).

- If the self-dual (SD) part of Weyl tensor \(C_+ \) of \(g \) is non-zero we find the necessary and sufficient conditions: \(C_+ \) spinor must be of algebraic type \(D \) and

\[
T = 0, \quad dV = 0,
\]

where \(T \in \Gamma(\mathcal{S} \otimes \text{Sym}^5(\mathcal{S}')) \), \(V \in \Gamma(\Lambda^1(M)) \) depend on \(C_+ \) and \(\nabla C_+ \).

- If \(C_+ = 0 \) we get some necessary conditions from the holonomy of the curvature of \(\mathcal{D} \). E.g. A metric with \(C_+ = 0 \) is conformal to Einstein AND conformal to Kähler if and only if it admits an isometry.

- Link with the metrisability problem (Bryant, MD, Eastwood. J. Diff. Geom. 2009): A projective structure on a surface \(U \) is metrisable if and only if the induced (2, 2) conformal structure on \(M = TU \) admits a Kähler metric or a para-Kähler metric.
Oriented Riemannian four-manifold \((M, g)\)

- \(\ast : \Lambda^2 \rightarrow \Lambda^2\), \(\ast^2 = \text{Id}\), \(\Lambda^2 = \Lambda^2_+ \oplus \Lambda^2_-\).
Oriented Riemannian four-manifold \((M, g)\)

- \(* : \Lambda^2 \to \Lambda^2\), \(*^2 = \text{Id}\), \(\Lambda^2 = \Lambda^2_+ \oplus \Lambda^2_-\).

- Riemann tensor gives rise to \(\mathcal{R} : \Lambda^2 \to \Lambda^2\).

\[
\mathcal{R} = \begin{pmatrix}
C_+ + \frac{R}{12} & \phi \\
\phi & C_- + \frac{R}{12}
\end{pmatrix}.
\]

\(C_\pm = \text{SD/ASD Weyl tensors}, \ \phi = \text{trace-free Ricci curvature}, \ \ R = \text{scalar curvature.}\)
\(\mathbb{C} \otimes TM \cong S \otimes S', \) where \((S, \varepsilon), (S', \varepsilon')\) are rank–two complex symplectic vector bundles (spin bundles) over \(M\).
\(\mathbb{C} \otimes TM \cong S \otimes S', \) where \((S, \varepsilon), (S', \varepsilon')\) are rank–two complex symplectic vector bundles (spin bundles) over \(M.\)

\[g(v_1 \otimes w_1, v_2 \otimes w_2) = \varepsilon(v_1, v_2)\varepsilon'(w_1, w_2), \text{ where } v_1, v_2 \in \Gamma(S), w_1, w_2 \in \Gamma(S'). \]
Spinors in Four Dimensions

- \(\mathbb{C} \otimes TM \cong S \otimes S' \), where \((S, \varepsilon), (S', \varepsilon')\) are rank-two complex symplectic vector bundles (spin bundles) over \(M \).

- \(g(v_1 \otimes w_1, v_2 \otimes w_2) = \varepsilon(v_1, v_2)\varepsilon'(w_1, w_2) \), where \(v_1, v_2 \in \Gamma(S) \), \(w_1, w_2 \in \Gamma(S') \).

- Two component spinor notation (love it or hate it):
 \(\mu \in \Gamma(S), \mu = \mu_A \). Spinor indices \(A, B, C, \cdots = 0, 1 \).
 \(\mu^A = \varepsilon^{AB} \mu_B, \mu_A = \mu^B \varepsilon_{BA} \). Metric \(g_{ab} = \varepsilon_{AB} \varepsilon_{A'B'} \).
Spinors in Four Dimensions

- $\mathbb{C} \otimes TM \cong S \otimes S'$, where $(S, \varepsilon), (S', \varepsilon')$ are rank–two complex symplectic vector bundles (spin bundles) over M.
- $g(v_1 \otimes w_1, v_2 \otimes w_2) = \varepsilon(v_1, v_2)\varepsilon'(w_1, w_2)$, where $v_1, v_2 \in \Gamma(S)$, $w_1, w_2 \in \Gamma(S')$.
- Two component spinor notation (love it or hate it):
 \[\mu \in \Gamma(S), \mu = \mu_A. \] Spinor indices $A, B, C, \cdots = 0, 1$.
 \[\mu^A = \varepsilon^{AB} \mu_B, \mu_A = \mu^B \varepsilon_{BA}. \] Metric $g_{ab} = \varepsilon_{AB} \varepsilon_{A'B'}$.
- Spinors and self–duality. $\Sigma \in \Lambda^2(M), \Sigma_{ab} = \Sigma_{[ab]}$.
 \[\Sigma_{AA'BB'} = \omega_{AB} \varepsilon_{A'B'} + \omega_{A'B'} \varepsilon_{AB}, \]
 where $\omega_{AB} = \omega_{(AB)}$ and $\omega_{A'B'} = \omega_{(A'B')}$.

Dunajski (DAMTP, Cambridge) Conformal to Kahler April 2011 6 / 13
Spinors in Four Dimensions

- $\mathbb{C} \otimes TM \cong S \otimes S'$, where $(S, \varepsilon), (S', \varepsilon')$ are rank–two complex symplectic vector bundles (spin bundles) over M.
- $g(v_1 \otimes w_1, v_2 \otimes w_2) = \varepsilon(v_1, v_2)\varepsilon'(w_1, w_2)$, where $v_1, v_2 \in \Gamma(S)$, $w_1, w_2 \in \Gamma(S')$.
- Two component spinor notation (love it or hate it):
 - $\mu \in \Gamma(S)$, $\mu = \mu_A$. Spinor indices $A, B, C, \ldots = 0, 1$.
 - $\mu^A = \varepsilon^{AB} \mu_B$, $\mu_A = \mu^B \varepsilon_{BA}$. Metric $g_{ab} = \varepsilon_{AB} \varepsilon_{A'B'}$.
- Spinors and self–duality. $\Sigma \in \Lambda^2(M)$, $\Sigma_{ab} = \Sigma_{[ab]}$.

$$\Sigma_{AA'B'B'} = \omega_{AB} \varepsilon_{A'B'} + \omega_{A'B'} \varepsilon_{AB},$$

where $\omega_{AB} = \omega_{(AB)}$ and $\omega_{A'B'} = \omega_{(A'B')}$.
- Spinor curvature decomposition

$$R_{abcd} = \psi_{ABCD} \varepsilon_{A'B'} \varepsilon_{C'D'} + \psi_{A'B'C'D'} \varepsilon_{AB} \varepsilon_{CD}$$
$$+ \phi_{ABC'D'} \varepsilon_{A'B'} \varepsilon_{CD} + \phi_{A'B'CD} \varepsilon_{AB} \varepsilon_{C'D'}$$
$$+ \frac{R}{12} \left(\varepsilon_{AC} \varepsilon_{BD} \varepsilon_{A'C'} \varepsilon_{B'D'} - \varepsilon_{AD} \varepsilon_{BC} \varepsilon_{A'D'} \varepsilon_{B'C'} \right).$$
Twistor equation

- $J^2 = -\text{Id}^2 \rightarrow \Sigma$ is SD or ASD. Make a choice:

$$\Sigma = \omega \otimes \varepsilon, \quad \omega \in \Gamma(S' \otimes S') \quad \text{(self–dual)}.$$
\[J^2 = -\text{Id}^2 \rightarrow \Sigma \text{ is SD or ASD. Make a choice:} \]

\[\Sigma = \omega \otimes \epsilon, \quad \omega \in \Gamma(S' \otimes S') \quad \text{(self–dual)}. \]

- Conformal rescallings

\[g \rightarrow \Omega^2 g, \quad \Sigma \rightarrow \Omega^3 \Sigma, \quad \text{so} \quad \omega \rightarrow \Omega^2 \omega. \]
Twistor equation

- \(J^2 = -\text{Id}^2 \rightarrow \Sigma \) is SD or ASD. Make a choice:

\[\Sigma = \omega \otimes \varepsilon, \quad \omega \in \Gamma(S' \otimes S') \] (self–dual).

- Conformal rescalling

\[g \rightarrow \Omega^2 g, \quad \Sigma \rightarrow \Omega^3 \Sigma, \quad \text{so} \quad \omega \rightarrow \Omega^2 \omega. \]

- **Lemma.** The metric \(g \) is conformal to a Kähler metric if and only if there exists a real, symmetric spinor field \(\omega \in \Gamma(S' \otimes S') \) satisfying

\[\nabla_A (A' \omega_{B'C'}) = 0, \quad (*) , \]

and such that \(|\omega|^2 \neq 0. \)
Twistor equation

- $J^2 = -\text{Id}^2 \rightarrow \Sigma$ is SD or ASD. Make a choice:

$$\Sigma = \omega \otimes \varepsilon, \quad \omega \in \Gamma(S' \otimes S')$$

(self–dual).

- Conformal rescalings

$$g \rightarrow \Omega^2 g, \quad \Sigma \rightarrow \Omega^3 \Sigma, \quad \text{so} \quad \omega \rightarrow \Omega^2 \omega.$$

- Lemma. The metric g is conformal to a Kähler metric if and only if there exists a real, symmetric spinor field $\omega \in \Gamma(S' \otimes S')$ satisfying

$$\nabla_{A(A'} \omega_{B'C')} = 0, \quad (*) \quad (\nabla \omega = d\omega)$$

and such that $|\omega|^2 \neq 0$.
Twistor equation

- \(J^2 = -\text{Id}^2 \rightarrow \Sigma \) is SD or ASD. Make a choice:

\[
\Sigma = \omega \otimes \varepsilon, \quad \omega \in \Gamma(S' \otimes S') \quad \text{(self–dual)}.
\]

- Conformal rescalling

\[
g \rightarrow \Omega^2 g, \quad \Sigma \rightarrow \Omega^3 \Sigma, \quad \text{so} \quad \omega \rightarrow \Omega^2 \omega.
\]

- **Lemma.** The metric \(g \) is conformal to a Kähler metric if and only if there exists a real, symmetric spinor field \(\omega \in \Gamma(S' \otimes S') \) satisfying

\[
\nabla_A(A'\omega_{B'C'}) = 0, \quad (*) \quad (\nabla \omega = d\omega)
\]

and such that \(|\omega|^2 \neq 0 \).

- (*) is the (conformally invariant) twistor equation. Idea: prolong it, look for integrability conditions.
Prolongation of $\nabla_A (A' \omega_{B'C'}) = 0$

- Drop symmetrisation: $\nabla_{AA'} \omega_{B'C'} - \varepsilon_{A'B'} K_{C'A} - \varepsilon_{A'C'} K_{B'A} = 0$ for some $K \in \Lambda^1(M)$.
Prolongation of $\nabla_A(A'\omega_{B'C'}) = 0$

- Drop symmetrisation: $\nabla_{AA'}\omega_{B'C'} - \varepsilon_{A'B'}K_{C'A} - \varepsilon_{A'C'}K_{B'A} = 0$ for some $K \in \Lambda^1(M)$.
- Differentiate and commute derivatives: $\psi^{E'}_{(A'B'C'\omega_{D'})E'} = 0$ and

$$\nabla_{AA'}K_{BB'} + P_{ABA'C'}\omega_{B'C'} - \varepsilon_{A'B'}\rho_{AB} = 0$$

(where $P_{ab} = (1/2)R_{ab} - (1/12)Rg_{ab}$) for some $\rho \in \Lambda^2_-(M)$.
PROLONGATION OF $\nabla_A(A' \omega_{B'C'}) = 0$

- Drop symmetrisation: $\nabla_{AA'} \omega_{B'C'} - \varepsilon_{A'B'} K_{C'A} - \varepsilon_{A'C'} K_{B'A} = 0$ for some $K \in \Lambda^1(M)$.
- Differentiate and commute derivatives: $\psi_{(A'B'C'\omega_{D'})E'} = 0$ and

$$\nabla_{AA'} K_{BB'} + P_{ABA'C'} \omega_{B'C'} - \varepsilon_{A'B'} \rho_{AB} = 0$$

(where $P_{ab} = (1/2)R_{ab} - (1/12)R_{g_{ab}}$) for some $\rho \in \Lambda^2(M)$.
- Differentiate and commute derivatives:

$$\nabla_{AA'} \rho_{BC} - \omega_{A'E'} \nabla_{E'} \psi_{ABCD} + K_D^{A'} \psi_{ABCD} - 2P_A'E'A(BK_C)^{E'} = 0.$$
Prolongation of $\nabla_{A}(A'\omega_{B'C'}) = 0$

- Drop symmetrisation: $\nabla_{AA'}\omega_{B'C'} - \varepsilon_{A'B'}K_{C'A} - \varepsilon_{A'C'}K_{B'A} = 0$ for some $K \in \Lambda^{1}(M)$.

- Differentiate and commute derivatives: $\psi^{E'}_{(A'B'C'\omega_{D'})E'} = 0$ and

$$\nabla_{AA'}K_{BB'} + P_{ABA'C'}\omega_{B'C'} - \varepsilon_{A'B'}\rho_{AB} = 0$$

(where $P_{ab} = (1/2)R_{ab} - (1/12)R_{g_{ab}}$) for some $\rho \in \Lambda^{2}(M)$.

- Differentiate and commute derivatives:

$$\nabla_{AA'}\rho_{BC} - \omega_{A'E'}\nabla_{E'D'}\psi_{ABCD} + K^{D}_{A'}\psi_{ABCD} - 2P_{A'E'A(BK_{C})}^{E'} = 0.$$

- Now the system is closed: All derivatives of ‘unknowns’ have been determined.
Prolongation of $\nabla_A (A' \omega_{B'C'}) = 0$

- Drop symmetrisation: $\nabla_{AA'} \omega_{B'C'} - \varepsilon_{A'B'} K_{C'A} - \varepsilon_{A'C'} K_{B'A} = 0$ for some $K \in \Lambda^1(M)$.
- Differentiate and commute derivatives: $\psi_{(A'B'C' \omega_{D'})E'} = 0$ and

$$\nabla_{AA'} K_{BB'} + P_{ABA'C'} \omega_{B'C'} - \varepsilon_{A'B'} \rho_{AB} = 0$$

(where $P_{ab} = (1/2) R_{ab} - (1/12) R_{g_{ab}}$) for some $\rho \in \Lambda^2_{-}(M)$.
- Differentiate and commute derivatives:

$$\nabla_{AA'} \rho_{BC} - \omega_{A'E'} \nabla_{E'} D \psi_{ABCD} + K_{A'D} \psi_{ABCD} - 2 P_{A'E'A} (B K_{C'}^{E'}) = 0.$$

- Now the system is closed: All derivatives of ‘unknowns’ have been determined.
- Geometric interpretation $\Psi = (\omega, K, \rho)$ is a section of a rank–10 vector bundle $E = \Lambda^2_{+}(M) \oplus \Lambda^1(M) \oplus \Lambda^2_{-}(M)$ which is parallel with respect to a connection D determined by the blue equations.
Compact hyperbolic four manifold \((M, g)\). Weyl= 0, \(R = -1\). All local obstructions vanish.
Example: Local vs. Global obstructions

- Compact hyperbolic four manifold \((M, g)\). Weyl = 0, \(R = -1\). All local obstructions vanish.
- Assume globally defined non-degenerate \(\omega\) satisfies the twistor eq.

\[\nabla \omega \neq 0 \] so \(\omega\) defines a Killing vector \(K^a\).

Killing identity \(\square K^a + R_{ab}K^b = 0\), where \(R_{ab} = -\frac{g_{ab}}{4}\).

Contract with \(K^a\), integrate by parts
\[\int_M |\nabla K^a|^2 \sqrt{g} \, d^4x = -\frac{1}{4} \int_M |K^a|^2 \sqrt{g} \, d^4x. \]

Therefore \(K^a = 0\) and our assumption was wrong.
Example: Local vs. Global obstructions

- Compact hyperbolic four manifold \((M, g)\). Weyl = 0, \(R = -1\). All local obstructions vanish.
- Assume globally defined non-degenerate \(\omega\) satisfies the twistor eq.
- \(\nabla \omega \neq 0\) so \(\omega\) defines a Killing vector \(K_a\).
Compact hyperbolic four manifold \((M, g)\). Weyl= 0, \(R = -1\). All local obstructions vanish.

Assume globally defined non-degenerate \(\omega\) satisfies the twistor eq.

\(\nabla \omega \neq 0\) so \(\omega\) defines a Killing vector \(K_a\).

Killing identity \(\Box K_a + R_{ab} K^b = 0\), where \(R_{ab} = -g_{ab}/4\).
Example: Local vs. Global obstructions

- Compact hyperbolic four manifold (M, g). Weyl $= 0$, $R = -1$. All local obstructions vanish.
- Assume globally defined non-degenerate ω satisfies the twistor eq.
 $\nabla \omega \neq 0$ so ω defines a Killing vector K_a.
- Killing identity $\Box K_a + R_{ab} K^b = 0$, where $R_{ab} = -g_{ab}/4$.
- Contract with K^a, integrate by parts

 \[\int_M |\nabla K|^2 \sqrt{g} d^4x = -\frac{1}{4} \int_M |K|^2 \sqrt{g} d^4x. \]
Example: Local vs. Global obstructions

- Compact hyperbolic four manifold \((M, g)\). Weyl= 0, \(R = -1\). All local obstructions vanish.
- Assume globally defined non-degenerate \(\omega\) satisfies the twistor eq. \(\nabla \omega \neq 0\) so \(\omega\) defines a Killing vector \(K_a\).
- Killing identity \(\Box K_a + R_{ab} K^b = 0\), where \(R_{ab} = -g_{ab}/4\).
- Contract with \(K^a\), integrate by parts
 \[
 \int_M |\nabla K|^2 \sqrt{g} d^4x = -\frac{1}{4} \int_M |K|^2 \sqrt{g} d^4x.
 \]
- Therefore \(K^a = 0\) and our assumption was wrong.
Generic case $C_+ \neq 0$

Recall $\psi^{E'}_{(A'B'C'\omega D')}E' = 0$ (*).
Generic case $C_+ \neq 0$

- Recall $\psi_{(A'B'C'D')E'}^E = 0$ (*).
- Find that C_+ is of type D i.e. $\psi_{A'B'C'D'} = \pm \omega_{(A'B'C'D')}$.

Generic case $C_+ \neq 0$

- Recall $\psi_{(A'B'C'\omega'D')E'} = 0 \ (\ast)$.
- Find that C_+ is of type D i.e. $\psi_{A'B'C'D'} = \pm \omega_{A'B'\omega'C'D'}$.
- Differentiate (\ast), impose the twistor equation.
Generic case \(C_+ \neq 0 \)

- Recall \(\psi^{E'}_{(A'B'C'\omega D')}E' = 0 \) (*).
- Find that \(C_+ \) is of type \(D \) i.e. \(\psi_{A'B'C'D'} = \pm \omega_{(A'B'\omega C'D')} \).
- Differentiate (*), impose the twistor equation.

Theorem. Let \((M, g)\) be a 4–manifold such that the self–dual part of the conformal curvature is non–zero. Then there exists a Kähler metric in \([g]\) if and only if \(C_+ \) is of type \(D \) and

\[
\nabla_A(A'\psi_{B'C'D'E'}) - V_A(A'\psi_{B'C'D'E'}) = 0, \quad \nabla_{[a}V_{b]} = 0,
\]

where \(V_{AA'} = \frac{1}{|\psi|^2} \left(\frac{1}{6} \nabla_{AA'}|\psi|^2 + \frac{4}{3} \psi_{B'C'D'E'} \nabla_{AB'} \psi_{C'D'E'A'} \right) \).
Theorem. Parallel sections Ψ of D on a rank 10 vector bundle $E \to M$ correspond to Kähler metrics in a conformal class.

Integrability conditions: $F \Psi = 0$ where $F = [D, D]$ (there are some indices, but let's not write them down).

If $F = 0$ then g is conformally flat. Otherwise differentiate: $(DF) \Psi = 0$, $(DDF) \Psi = 0$, ...

After K steps $F^K \Psi = 0$, where F^K is a matrix of linear blue eqns.

Stop when rank $(F^K) = \text{rank}(F^{K+1})$. The space of parallel sections has dimension $(10 - \text{rank}(F^K))$.

Theorem. An anti-self–dual Einstein metric g with $\Lambda \neq 0$ is conformal to a Kähler metric iff g admits a Killing vector.

Examples of conf. classes with more than one (local) Kähler metrics: Fubini-Study metric on \mathbb{CP}^2 with reversed orientation.

Dunajski (DAMTP, Cambridge)
Theorem. Parallel sections Ψ of \mathcal{D} on a rank 10 vector bundle $E \to M$ correspond to Kähler metrics in a conformal class.

Integrability conditions: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [\mathcal{D}, \mathcal{D}]$ (there are some indices, but let's not write them down).

If $\mathcal{F} = 0$ then g is conformally flat. Otherwise differentiate:

- $(\mathcal{D}\mathcal{F})\Psi = 0$,
- $(\mathcal{D}\mathcal{D}\mathcal{F})\Psi = 0$,
- ...

After K steps $\mathcal{F}_K\Psi = 0$, where \mathcal{F}_K is a matrix of linear equations. Stop when rank $(\mathcal{F}_K) = \text{rank} (\mathcal{F}_{K+1})$. The space of parallel sections has dimension $(10 - \text{rank} (\mathcal{F}_K))$.

Theorem. An anti-self–dual Einstein metric g with $\Lambda \neq 0$ is conformal to a Kähler metric iff g admits a Killing vector.

Examples of conformal classes with more than one (local) Kähler metrics:
- Fubini-Study metric on \mathbb{CP}^2 with reversed orientation.

Dunajski (DAMTP, Cambridge)
Conformal to Kähler
April 2011
Theorem. Parallel sections \(\Psi \) of \(\mathcal{D} \) on a rank 10 vector bundle \(E \to M \) correspond to Kähler metrics in a conformal class.

Integrability conditions: \(\mathcal{F} \Psi = 0 \) where \(\mathcal{F} = [\mathcal{D}, \mathcal{D}] \) (there are some indices, but let's not write them down).

If \(\mathcal{F} = 0 \) then \(g \) is conformally flat. Otherwise differentiate: \((\mathcal{D}\mathcal{F})\Psi = 0, (\mathcal{D}\mathcal{D}\mathcal{F})\Psi = 0, \ldots \)
Theorem. Parallel sections Ψ of D on a rank 10 vector bundle $E \to M$ correspond to Kähler metrics in a conformal class.

Integrability conditions: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [D, D]$ (there are some indices, but let's not write them down).

If $\mathcal{F} = 0$ then g is conformally flat. Otherwise differentiate: $(DF)\Psi = 0, (DDF)\Psi = 0, \ldots$

After K steps $\mathcal{F}_K \Psi = 0$, where \mathcal{F}_K is a matrix of linear blue eqn.
Theorem. Parallel sections Ψ of \mathcal{D} on a rank 10 vector bundle $E \to M$ correspond to Kähler metrics in a conformal class.

Integrability conditions: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [\mathcal{D}, \mathcal{D}]$ (there are some indices, but let's not write them down).

If $\mathcal{F} = 0$ then g is conformally flat. Otherwise differentiate:

$(\mathcal{D}\mathcal{F})\Psi = 0, (\mathcal{D}\mathcal{D}\mathcal{F})\Psi = 0, \ldots$

After K steps $\mathcal{F}_K\Psi = 0$, where \mathcal{F}_K is a matrix of linear blue eqn.

Stop when $\text{rank } (\mathcal{F}_K) = \text{rank } (\mathcal{F}_{K+1})$. The space of parallel sections has dimension $(10 - \text{rank}(\mathcal{F}_K))$.

Theorem. An anti-self–dual Einstein metric g with $\Lambda \neq 0$ is conformal to a Kähler metric iff g admits a Killing vector.

Examples of conf. classes with more than one (local) Kähler metrics:

- Fubini-Study metric on \mathbb{CP}^2 with reversed orientation.
Anti–self–dual case

- **Theorem.** Parallel sections Ψ of \mathcal{D} on a rank 10 vector bundle $E \rightarrow M$ correspond to Kähler metrics in a conformal class.

- Integrability conditions: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [\mathcal{D}, \mathcal{D}]$ (there are some indices, but let's not write them down).

- If $\mathcal{F} = 0$ then g is conformally flat. Otherwise differentiate: $(DF)\Psi = 0$, $(DDF)\Psi = 0, \ldots$

- After K steps $\mathcal{F}_K\Psi = 0$, where \mathcal{F}_K is a matrix of linear blue eqn.

- Stop when rank $(\mathcal{F}_K) = \text{rank} (\mathcal{F}_{K+1})$. The space of parallel sections has dimension $(10 - \text{rank}(\mathcal{F}_K))$.

- **Theorem.** An anti-self–dual Einstein metric g with $\Lambda \neq 0$ is conformal to a Kähler metric iff g admits a Killing vector.
Anti–self–dual case

- **Theorem.** Parallel sections Ψ of \mathcal{D} on a rank 10 vector bundle $E \to M$ correspond to Kähler metrics in a conformal class.

- Integrability conditions: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [\mathcal{D}, \mathcal{D}]$ (there are some indices, but lets not write them down).

- If $\mathcal{F} = 0$ then g is conformally flat. Otherwise differentiate:

 $$(\mathcal{D}\mathcal{F})\Psi = 0, (\mathcal{D}\mathcal{D}\mathcal{F})\Psi = 0, \ldots$$

- After K steps $\mathcal{F}_K\Psi = 0$, where \mathcal{F}_K is a matrix of linear blue eqn.

- Stop when rank $(\mathcal{F}_K) = \text{rank} (\mathcal{F}_{K+1})$. The space of parallel sections has dimension $(10 - \text{rank}(\mathcal{F}_K))$.

- **Theorem.** An anti-self–dual Einstein metric g with $\Lambda \neq 0$ is conformal to a Kähler metric iff g admits a Killing vector.

- Examples of conf. classes with more than one (local) Kähler metrics: Fubini-Study metric on \mathbb{CP}^2 with reversed orientation.

Dunajski (DAMTP, Cambridge) Conformal to Kahler April 2011 11 / 13
A projective structure on an open set $U \subset \mathbb{R}^2$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.
A projective structure on an open set $U \subset \mathbb{R}^2$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.

$$\hat{\Gamma}^k_{ij} = \Gamma^k_{ij} + \delta^k_i \omega_j + \delta^k_j \omega_i, \quad i, j, k = 1, 2.$$

for some one–form $\omega = \omega_i dx^i$.

Theorem. The metric g is conformal to (para) Kähler iff the projective structure is metrisable.
A projective structure on an open set $U \subset \mathbb{R}^2$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.

$$\hat{\Gamma}^k_{ij} = \Gamma^k_{ij} + \delta^k_i \omega_j + \delta^k_j \omega_i, \quad i, j, k = 1, 2.$$ for some one–form $\omega = \omega_i dx^i$.

Projective connection (T. Y. Thomas) $\Pi^k_{ij} = \Gamma^k_{ij} - \frac{1}{3} \Gamma^l_{li} \delta^k_j - \frac{1}{3} \Gamma^l_{lj} \delta^k_i$.

Bibliography

- Walker (1953), Yano–Ishihara, ...
- Bryant, MD, Eastwood, 09.
- Dunajski (DAMTP, Cambridge)

Notes

- Theorem.
- The metric g is conformal to (para) Kähler iff the projective structure is metrisable.
A projective structure on an open set $U \subset \mathbb{R}^2$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.

$$\hat{\Gamma}^k_{ij} = \Gamma^k_{ij} + \delta^k_i \omega_j + \delta^k_j \omega_i, \quad i, j, k = 1, 2.$$

for some one–form $\omega = \omega_i dx^i$.

Projective connection (T. Y. Thomas) $\Pi^k_{ij} = \Gamma^k_{ij} - \frac{1}{3} \Gamma^l_{li} \delta^k_j - \frac{1}{3} \Gamma^l_{lj} \delta^k_i$.

Geodesics of a generic projective structures are not unparametrised geodesics of any metrics. The necessary and sufficient conditions for metrisability have recently been found (Bryant, MD, Eastwood, 09).
A projective structure on an open set $U \subset \mathbb{R}^2$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.

$$\hat{\Gamma}^k_{ij} = \Gamma^k_{ij} + \delta_i^k \omega_j + \delta_j^k \omega_i, \quad i, j, k = 1, 2.$$

for some one–form $\omega = \omega_i dx^i$.

Projective connection (T. Y. Thomas) $\Pi^k_{ij} = \Gamma^k_{ij} - \frac{1}{3} \Gamma^l_{li} \delta^k_j - \frac{1}{3} \Gamma^l_{lj} \delta^k_i$.

Geodesics of a generic projective structures are not unparametrised geodesics of any metrics. The necessary and sufficient conditions for metrisability have recently been found (Bryant, MD, Eastwood, 09).

Construct a signature signature $(2, 2)$ metric on TU

$$g = dz_i \otimes dx^i - \Pi^k_{ij}(x) z_k dx^i \otimes dx^j, \quad i, j, k = 1, 2.$$

Walker (1953), Yano–Ishihara, ...
A projective structure on an open set $U \subset \mathbb{R}^2$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.

$$\hat{\Gamma}_{ij}^k = \Gamma_{ij}^k + \delta_i^k \omega_j + \delta_j^k \omega_i, \quad i, j, k = 1, 2.$$

for some one–form $\omega = \omega_i dx^i$.

Projective connection (T. Y. Thomas) $\Pi_{ij}^k = \Gamma_{ij}^k - \frac{1}{3} \Gamma_{li}^l \delta_j^k - \frac{1}{3} \Gamma_{lj}^l \delta_i^k$.

Geodesics of a generic projective structures are not unparametrised geodesics of any metrics. The necessary and sufficient conditions for metrisability have recently been found (Bryant, MD, Eastwood, 09).

Construct a signature signature $(2, 2)$ metric on TU

$$g = dz_i \otimes dx^i - \Pi_{ij}^k(x) z_k dx^i \otimes dx^j, \quad i, j, k = 1, 2.$$

Walker (1953), Yano–Ishihara,

Theorem. The metric g is conformal to (para) Kähler iff the projective structure is metrisable.
Summary and Outlook

MD (2009) Solitons, Instantons and Twistors. OUP.

Conformal to Kahler
April 2011 13 / 13
Conformal to Kähler in dimensions four. Overdetermined system of linear PDEs. Necessary and sufficient conditions in the generic case. Prolongation bundle of rank 10 in the anti–self–dual case. Take this number, type it into Google, ….
Summary and Outlook

- Conformal to Kähler in dimensions four. Overdetermined system of linear PDEs. Necessary and sufficient conditions in the generic case. Prolongation bundle of rank 10 in the anti–self–dual case. Take this number, type it into Google,

- Twistor theory. Preferred section of $\kappa_{Z}^{-1/2}$ of $Z \to M$. Prolongation bundle E with connection over $M \leftrightarrow$ Holomorphic vector bundle (no connection!) \mathcal{E} over Z. Find $\mathcal{E} = J^2(\kappa_{Z}^{-1/2})$. MD (2009) Solitons, Instantons and Twistors. OUP. Conformal to Kähler April 2011 13 / 13
Conformal to Kähler in dimensions four. Overdetermined system of linear PDEs. Necessary and sufficient conditions in the generic case. Prolongation bundle of rank 10 in the anti–self–dual case. Take this number, type it into Google,

Twistor theory. Preferred section of $\kappa_Z^{-1/2}$ of $Z \to M$. Prolongation bundle E with connection over $M \leftrightarrow$ Holomorphic vector bundle (no connection!) \mathcal{E} over Z. Find $\mathcal{E} = J^2(\kappa_Z^{-1/2})$.

MD (2009) *Solitons, Instantons and Twistors*. OUP.
Conformal to Kähler in dimensions four. Overdetermined system of linear PDEs. Necessary and sufficient conditions in the generic case. Prolongation bundle of rank 10 in the anti–self–dual case. Take this number, type it into Google,

Twistor theory. Preferred section of $\kappa_Z^{-1/2}$ of $Z \to M$. Prolongation bundle E with connection over $M \leftrightarrow$ Holomorphic vector bundle (no connection!) \mathcal{E} over Z. Find $\mathcal{E} = J^2(\kappa_Z^{-1/2})$.

MD (2009) *Solitons, Instantons and Twistors*. OUP.

Summary and Outlook

- Conformal to Kähler in dimensions four. Overdetermined system of linear PDEs. Necessary and sufficient conditions in the generic case. Prolongation bundle of rank 10 in the anti–self–dual case. Take this number, type it into Google,

- Twistor theory. Preferred section of $\kappa^{-1/2}_Z$ of $Z \to M$. Prolongation bundle E with connection over $M \leftrightarrow$ Holomorphic vector bundle (no connection!) \mathcal{E} over Z. Find $\mathcal{E} = J^2(\kappa_Z^{-1/2})$.

MD (2009) Solitons, Instantons and Twistors. OUP.

- General approach to overdetermined systems: prolong, construct connection, restrict its holonomy. Applicable to other ‘can you find’ problems.