Ambient Metrics
and
Exceptional Holonomy

Robin Graham
University of Washington

Arkansas Spring Lecture Series
April 7, 2011
Let (M, g) be a connected pseudo-Riemannian manifold of signature (p, q), $p + q = n$.
Let \((M, g)\) be a connected pseudo-Riemannian manifold of signature \((p, q)\), \(p + q = n\).

Can define \(\text{Hol}(M, g) \subset SO_e(p, q)\) (Restricted holonomy group)
Let \((M, g)\) be a connected pseudo-Riemannian manifold of signature \((p, q)\), \(p + q = n\).

Can define \(\text{Hol}(M, g) \subset SO_e(p, q)\) (Restricted holonomy group)

\(\text{Hol}(M, g)\) is all the linear transformations obtained by parallel translation around contractible loops.
Let \((M, g)\) be a connected pseudo-Riemannian manifold of signature \((p, q), p + q = n\).

Can define \(\text{Hol}(M, g) \subset SO_e(p, q)\) \((\text{Restricted holonomy group})\)

\(\text{Hol}(M, g)\) is all the linear transformations obtained by parallel translation around contractible loops.

\(\text{Hol}(M, g)\) measures the structure preserved by parallel translation.
Let \((M, g)\) be a connected pseudo-Riemannian manifold of signature \((p, q)\), \(p + q = n\).

Can define \(\text{Hol}(M, g) \subset SO_e(p, q)\) (Restricted holonomy group)

\(\text{Hol}(M, g)\) is all the linear transformations obtained by parallel translation around contractible loops.

\(\text{Hol}(M, g)\) measures the structure preserved by parallel translation.

Most \((M, g)\) have holonomy \(SO_e(p, q)\).
Let \((M, g)\) be a connected pseudo-Riemannian manifold of signature \((p, q), \ p + q = n.\)

Can define \(\text{Hol}(M, g) \subset SO_e(p, q)\) (Restricted holonomy group)

\(\text{Hol}(M, g)\) is all the linear transformations obtained by parallel translation around contractible loops.

\(\text{Hol}(M, g)\) measures the structure preserved by parallel translation.

Most \((M, g)\) have holonomy \(SO_e(p, q).\)

Examples: \(\text{Hol}(M, g) \subset U(n)\) if and only if \(g\) is Kähler.
Holonomy

Let \((M, g)\) be a connected pseudo-Riemannian manifold of signature \((p, q), p + q = n\).

Can define \(\text{Hol}(M, g) \subset SO_e(p, q)\) (Restricted holonomy group)

\(\text{Hol}(M, g)\) is all the linear transformations obtained by parallel translation around contractible loops.

\(\text{Hol}(M, g)\) measures the structure preserved by parallel translation.

Most \((M, g)\) have holonomy \(SO_e(p, q)\).

Examples: \(\text{Hol}(M, g) \subset U(n)\) if and only if \(g\) is Kähler.

\(\text{Hol}(M, g) = \{e\}\) if and only if \(g\) is flat.
Question. Which subgroups of $SO_e(p, q)$ can arise as $Hol(M, g)$?
Question. Which subgroups of $SO_e(p, q)$ can arise as $\text{Hol}(M, g)$?

Say that $G \subset SO_e(p, q)$ is irreducible if its action on \mathbb{R}^n has no nontrivial invariant subspaces.
Question. Which subgroups of $SO_e(p, q)$ can arise as $\text{Hol}(M, g)$?

Say that $G \subset SO_e(p, q)$ is irreducible if its action on \mathbb{R}^n has no nontrivial invariant subspaces.

In 1953 Berger derived list of irreducible subgroups for each p, q, n.
Question. Which subgroups of $SO_e(p, q)$ can arise as $\text{Hol}(M, g)$?

Say that $G \subset SO_e(p, q)$ is irreducible if its action on \mathbb{R}^n has no nontrivial invariant subspaces.

In 1953 Berger derived list of irreducible subgroups for each p, q, n.

Every irreducible subgroup of $SO_e(p, q)$ which arises as $\text{Hol}(M, g)$ for some non-symmetric (M, g) is on the list.
Question. Which subgroups of $SO_e(p, q)$ can arise as Hol(M, g)?

Say that $G \subset SO_e(p, q)$ is irreducible if its action on \mathbb{R}^n has no nontrivial invariant subspaces.

In 1953 Berger derived list of irreducible subgroups for each p, q, n.

Every irreducible subgroup of $SO_e(p, q)$ which arises as Hol(M, g) for some non-symmetric (M, g) is on the list.

Question becomes: Does every group on Berger’s list arise as a holonomy group?
Question. Which subgroups of $SO_e(p, q)$ can arise as $\text{Hol}(M, g)$?

Say that $G \subset SO_e(p, q)$ is irreducible if its action on \mathbb{R}^n has no nontrivial invariant subspaces.

In 1953 Berger derived list of irreducible subgroups for each p, q, n.

Every irreducible subgroup of $SO_e(p, q)$ which arises as $\text{Hol}(M, g)$ for some non-symmetric (M, g) is on the list.

Question becomes: Does every group on Berger’s list arise as a holonomy group?

For many, but not all, groups on the list, examples were known of (M, g) with that holonomy.
Other than $SO_e(p, q)$, every group on Berger’s list occurs for n even, with two exceptions.
Other than $SO_e(p, q)$, every group on Berger’s list occurs for n even, with two exceptions.

Both exceptions occur for $n = 7$.
Other than $SO_e(p, q)$, every group on Berger’s list occurs for n even, with two exceptions.

Both exceptions occur for $n = 7$.

They are the two real forms of G_2: $G_2^c \subset SO(7)$ and $G_2^s \subset SO(3, 4)$.
Other than $SO_e(p, q)$, every group on Berger’s list occurs for n even, with two exceptions.

Both exceptions occur for $n = 7$.

They are the two real forms of G_2:

$G_2^c \subset SO(7)$ and $G_2^s \subset SO(3, 4)$.

The existence question for these groups remained open until 1987.
Other than $SO_e(p, q)$, every group on Berger’s list occurs for n even, with two exceptions.

Both exceptions occur for $n = 7$.

They are the two real forms of G_2:

$G_2^c \subset SO(7)$ and $G_2^s \subset SO(3, 4)$.

The existence question for these groups remained open until 1987.

Theorem. (R. Bryant, 1987) There exist metrics of holonomy equal to G_2^c and G_2^s.
Other than $SO_e(p, q)$, every group on Berger’s list occurs for n even, with two exceptions.

Both exceptions occur for $n = 7$.

They are the two real forms of G_2:

$G_2^c \subset SO(7)$ and $G_2^s \subset SO(3, 4)$.

The existence question for these groups remained open until 1987.

Theorem. (R. Bryant, 1987) There exist metrics of holonomy equal to G_2^c and G_2^s.

More such metrics are known now, but they are not so easy to come by. New examples are of interest.
Let $\varphi \in \Lambda^3 \mathbb{R}^7^*$.
Let $\varphi \in \Lambda^3 \mathbb{R}^7^*$. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \downarrow \varphi) \wedge (Y \downarrow \varphi) \wedge \varphi = \langle X, Y \rangle_{\varphi} e_1^* \wedge \ldots \wedge e_7^*$$
Let $\varphi \in \Lambda^3 \mathbb{R}^7^\ast$. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \perp \varphi) \wedge (Y \perp \varphi) \wedge \varphi = \langle X, Y \rangle_{\varphi} e_1^* \wedge \ldots \wedge e_7^*$$

Definition. φ is nondegenerate if $\langle X, Y \rangle_{\varphi}$ is nondegenerate.
Let $\varphi \in \Lambda^3 \mathbb{R}^{7*}$. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \perp \varphi) \land (Y \perp \varphi) \land \varphi = \langle X, Y \rangle_{\varphi} e_1^* \land \ldots \land e_7^*$$

Definition. φ is nondegenerate if $\langle X, Y \rangle_{\varphi}$ is nondegenerate.

Theorem. φ nondegenerate \implies $\pm \langle \cdot, \cdot \rangle_{\varphi}$ has signature $(7, 0)$ or $(3, 4)$.
Let $\varphi \in \Lambda^3 \mathbb{R}^7^*$. Define $\langle \cdot, \cdot \rangle_\varphi$ by

$$(X \perp \varphi) \wedge (Y \perp \varphi) \wedge \varphi = \langle X, Y \rangle_\varphi e_1^* \wedge \ldots \wedge e_7^*$$

Definition. φ is nondegenerate if $\langle X, Y \rangle_\varphi$ is nondegenerate.

Theorem. φ nondegenerate \implies

$$\pm \langle \cdot, \cdot \rangle_\varphi$$

has signature $(7, 0)$ or $(3, 4)$.

Say φ is compact type if $(7, 0)$
Let $\varphi \in \Lambda^3 \mathbb{R}^7^*$. Define $\langle \cdot, \cdot \rangle_\varphi$ by

$$(X \perp \varphi) \wedge (Y \perp \varphi) \wedge \varphi = \langle X, Y \rangle_\varphi e_1^* \wedge \ldots \wedge e_7^*$$

Definition. φ is nondegenerate if $\langle X, Y \rangle_\varphi$ is nondegenerate.

Theorem. φ nondegenerate \implies

$\pm \langle \cdot, \cdot \rangle_\varphi$ has signature $(7, 0)$ or $(3, 4)$.

Say φ is compact type if $(7, 0)$ (φ^c),
Let $\varphi \in \Lambda^3 \mathbb{R}^7^*$. Define $\langle \cdot, \cdot \rangle_\varphi$ by

$$(X \perp \varphi) \wedge (Y \perp \varphi) \wedge \varphi = \langle X, Y \rangle_\varphi e_1^* \wedge \ldots \wedge e_7^*$$

Definition. φ is nondegenerate if $\langle X, Y \rangle_\varphi$ is nondegenerate.

Theorem. φ nondegenerate \implies

$$\pm \langle \cdot, \cdot \rangle_\varphi \text{ has signature (7, 0) or (3, 4).}$$

Say φ is compact type if $(7, 0)$ (φ^c), φ split type if $(3, 4)$.
Let $\varphi \in \Lambda^3 \mathbb{R}^7^*$. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \perp \varphi) \wedge (Y \perp \varphi) \wedge \varphi = \langle X, Y \rangle_{\varphi} e_1^* \wedge \ldots \wedge e_7^*$$

Definition. φ is nondegenerate if $\langle X, Y \rangle_{\varphi}$ is nondegenerate.

Theorem. φ nondegenerate \implies

$\pm \langle \cdot, \cdot \rangle_{\varphi}$ has signature $(7, 0)$ or $(3, 4)$.

Say φ is compact type if $(7, 0)$ (φ^c), φ split type if $(3, 4)$ (φ^s).
Let $\varphi \in \Lambda^3 \mathbb{R}^7^*$. Define $\langle \cdot, \cdot \rangle_\varphi$ by

$$(X \perp \varphi) \wedge (Y \perp \varphi) \wedge \varphi = \langle X, Y \rangle_\varphi e_1^* \wedge \ldots \wedge e_7^*$$

Definition. φ is nondegenerate if $\langle X, Y \rangle_\varphi$ is nondegenerate.

Theorem. φ nondegenerate \implies $\pm \langle \cdot, \cdot \rangle_\varphi$ has signature $(7, 0)$ or $(3, 4)$.

Say φ is compact type if $(7, 0) (\varphi^c)$, φ split type if $(3, 4) (\varphi^s)$.

Fact. φ^c and φ^s are unique up to $GL(7, \mathbb{R})$.
Let $\varphi \in \Lambda^3 \mathbb{R}^7^*$. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by
\[
(X \perp \varphi) \wedge (Y \perp \varphi) \wedge \varphi = \langle X, Y \rangle_{\varphi} e_1^* \wedge \ldots \wedge e_7^*
\]

Definition. φ is nondegenerate if $\langle X, Y \rangle_{\varphi}$ is nondegenerate.

Theorem. φ nondegenerate $\implies \pm \langle \cdot, \cdot \rangle_{\varphi}$ has signature $(7, 0)$ or $(3, 4)$.

Say φ is compact type if $(7, 0)$ (φ^c), φ split type if $(3, 4)$ (φ^s).

Fact. φ^c and φ^s are unique up to $GL(7, \mathbb{R})$.

Definition.
\[
G_2^c = \{ A \in GL(7, \mathbb{R}) : A^* \varphi^c = \varphi^c \} \subset SO(7)
\]
\[
G_2^s = \{ A \in GL(7, \mathbb{R}) : A^* \varphi^s = \varphi^s \} \subset SO(3, 4).
\]
Let $\varphi \in \Lambda^3 \mathbb{R}^7^*$. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \perp \varphi) \wedge (Y \perp \varphi) \wedge \varphi = \langle X, Y \rangle_{\varphi} e_1^* \wedge \ldots \wedge e_7^*$$

Definition. φ is nondegenerate if $\langle X, Y \rangle_{\varphi}$ is nondegenerate.

Theorem. φ nondegenerate \implies $\pm \langle \cdot, \cdot \rangle_{\varphi}$ has signature $(7, 0)$ or $(3, 4)$.

Say φ is compact type if $(7, 0) \ (\varphi^c)$, φ split type if $(3, 4) \ (\varphi^s)$.

Fact. φ^c and φ^s are unique up to $GL(7, \mathbb{R})$.

Definition. $G_2^c = \{ A \in GL(7, \mathbb{R}) : A^* \varphi^c = \varphi^c \} \subset SO(7)$

$G_2^s = \{ A \in GL(7, \mathbb{R}) : A^* \varphi^s = \varphi^s \} \subset SO(3, 4)$.

From now on, $G_2 = G_2^s$.

G_2
2-plane Fields in Dimension 5

Let $\mathcal{D} \subset TM^5$, $\dim \mathcal{D}_x = 2$.
Let $\mathcal{D} \subset TM^5$, $\dim \mathcal{D}_x = 2$. X, Y local frame.
Let $\mathcal{D} \subset TM^5$, $\dim \mathcal{D}_x = 2$. X, Y local frame. Set $Z = [X, Y]$.
Let $\mathcal{D} \subset TM^5$, $\dim \mathcal{D}_x = 2$. X, Y local frame. Set $Z = [X, Y]$.

Definition. \mathcal{D} is generic if $X, Y, Z, [X, Z], [Y, Z]$ are everywhere linearly independent.
Let $\mathcal{D} \subset TM^5$, $\dim \mathcal{D}_x = 2$. X, Y local frame. Set $Z = [X, Y]$.

Definition. \mathcal{D} is generic if $X, Y, Z, [X, Z], [Y, Z]$ are everywhere linearly independent.

E. Cartan (1910) solved the equivalence problem for such \mathcal{D}. Constructed a principal bundle and Cartan connection.
Let $\mathcal{D} \subset TM^5$, $\dim \mathcal{D}_X = 2$. X, Y local frame. Set $Z = [X, Y]$.

Definition. \mathcal{D} is generic if X, Y, Z, $[X, Z]$, $[Y, Z]$ are everywhere linearly independent.

E. Cartan (1910) solved the equivalence problem for such \mathcal{D}. Constructed a principal bundle and Cartan connection.

The model is $G_2/P \cong S^2 \times S^3$, $P \subset G_2$ parabolic subgroup.
Let $\mathcal{D} \subset TM^5$, $\dim \mathcal{D}_x = 2$. X, Y local frame. Set $Z = [X, Y]$.

Definition. \mathcal{D} is generic if X, Y, Z, $[X, Z]$, $[Y, Z]$ are everywhere linearly independent.

E. Cartan (1910) solved the equivalence problem for such \mathcal{D}. Constructed a principal bundle and Cartan connection.

The model is $G_2/P \cong S^2 \times S^3$, $P \subset G_2$ parabolic subgroup.

So G_2 acts on $S^2 \times S^3$ preserving the model $\mathcal{D} \subset T(S^2 \times S^3)$.
Let $\mathcal{D} \subset TM^5$, dim $\mathcal{D}_x = 2$. X, Y local frame. Set $Z = [X, Y]$.

Definition. \mathcal{D} is generic if $X, Y, Z, [X, Z], [Y, Z]$ are everywhere linearly independent.

E. Cartan (1910) solved the equivalence problem for such \mathcal{D}. Constructed a principal bundle and Cartan connection.

The model is $G_2/P \cong S^2 \times S^3$, $P \subset G_2$ parabolic subgroup.

So G_2 acts on $S^2 \times S^3$ preserving the model $\mathcal{D} \subset T(S^2 \times S^3)$.

Recall $G_2 \subset SO(3, 4)$
Let $\mathcal{D} \subset TM^5$, $\dim \mathcal{D}_X = 2$. X, Y local frame. Set $Z = [X, Y]$.

Definition. \mathcal{D} is generic if $X, Y, Z, [X, Z], [Y, Z]$ are everywhere linearly independent.

E. Cartan (1910) solved the equivalence problem for such \mathcal{D}. Constructed a principal bundle and Cartan connection.

The model is $G_2/P \cong S^2 \times S^3$, $P \subset G_2$ parabolic subgroup.

So G_2 acts on $S^2 \times S^3$ preserving the model $\mathcal{D} \subset T(S^2 \times S^3)$.

Recall $G_2 \subset SO(3, 4) = \text{conformal group of } (S^2 \times S^3, g_{S^2} - g_{S^3})$.
Let $\mathcal{D} \subset TM^5$, $\dim \mathcal{D}_x = 2$. X, Y local frame. Set $Z = [X, Y]$.

Definition. \mathcal{D} is generic if X, Y, Z, $[X, Z]$, $[Y, Z]$ are everywhere linearly independent.

E. Cartan (1910) solved the equivalence problem for such \mathcal{D}. Constructed a principal bundle and Cartan connection.

The model is $G_2/P \cong S^2 \times S^3$, $P \subset G_2$ parabolic subgroup. So G_2 acts on $S^2 \times S^3$ preserving the model $\mathcal{D} \subset T(S^2 \times S^3)$.

Recall $G_2 \subset SO(3, 4) = \text{conformal group of } (S^2 \times S^3, g_{S^2} - g_{S^3})$. The action of G_2 is the restriction of the conformal action of $SO(3, 4)$.
2-plane Fields in Dimension 5

Let $D \subset TM^5$, $\dim D_x = 2$. X, Y local frame. Set $Z = [X, Y]$.

Definition. D is generic if X, Y, Z, $[X, Z]$, $[Y, Z]$ are everywhere linearly independent.

E. Cartan (1910) solved the equivalence problem for such D. Constructed a principal bundle and Cartan connection.

The model is $G_2/P \cong S^2 \times S^3$, $P \subset G_2$ parabolic subgroup.

So G_2 acts on $S^2 \times S^3$ preserving the model $D \subset T(S^2 \times S^3)$.

Recall $G_2 \subset SO(3, 4) = \text{conformal group of } (S^2 \times S^3, g_{S^2} - g_{S^3})$.

The action of G_2 is the restriction of the conformal action of $SO(3, 4)$.

So any diffeomorphism preserving D also preserves the $(2, 3)$ conformal structure on $S^2 \times S^3$!
Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset TM^5$ generic. There is a conformal class $[g]$ on M of signature $(2, 3)$ associated to \mathcal{D}.
Theorem. (Nurowski, 2005) Any $D \subset TM^5$ generic. There is a conformal class $[g]$ on M of signature $(2,3)$ associated to D.

Follows immediately from the existence of the Cartan connection.
Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset TM^5$ generic. There is a conformal class $[g]$ on M of signature $(2, 3)$ associated to \mathcal{D}.

Follows immediately from the existence of the Cartan connection.

For any \mathcal{D}, can choose local coordinates (x, y, z, p, q) on M so that

$$\mathcal{D} = \text{span}\{\partial_q, \partial_x + p\partial_y + q\partial_p + F\partial_z\}$$

where $F = F(x, y, z, p, q)$ and F_{qq} is nonvanishing.
Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset TM^5$ generic. There is a conformal class $[g]$ on M of signature $(2, 3)$ associated to \mathcal{D}.

Follows immediately from the existence of the Cartan connection.

For any \mathcal{D}, can choose local coordinates (x, y, z, p, q) on M so that

$$\mathcal{D} = \text{span}\{\partial_q, \partial_x + p\partial_y + q\partial_p + F\partial_z\}$$

where $F = F(x, y, z, p, q)$ and F_{qq} is nonvanishing.

$F = q^2$ for the model.
Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset TM^5$ generic. There is a conformal class $[g]$ on M of signature $(2, 3)$ associated to \mathcal{D}.

Follows immediately from the existence of the Cartan connection.

For any \mathcal{D}, can choose local coordinates (x, y, z, p, q) on M so that

$$\mathcal{D} = \text{span}\{ \partial_q, \partial_x + p\partial_y + q\partial_p + F\partial_z \}$$

where $F = F(x, y, z, p, q)$ and F_{qq} is nonvanishing.

$F = q^2$ for the model.

Nurowski gives a formula for g in terms of F and its derivatives of orders ≤ 4.
Theorem. (Nurowski, 2005) Any $D \subset TM^5$ generic. There is a conformal class $[g]$ on M of signature $(2, 3)$ associated to D.

Follows immediately from the existence of the Cartan connection.

For any D, can choose local coordinates (x, y, z, p, q) on M so that

$$D = \text{span}\{\partial_q, \partial_x + p\partial_y + q\partial_p + F\partial_z\}$$

where $F = F(x, y, z, p, q)$ and F_{qq} is nonvanishing.

$F = q^2$ for the model.

Nurowski gives a formula for g in terms of F and its derivatives of orders ≤ 4.

Approximately 70 terms. Very nasty.
Given conformal manifold \((M, [g])\) of signature \((p, q)\), \(p + q = n\).
Given conformal manifold \((M, [g])\) of signature \((p, q)\), \(p + q = n\).

Obtain a manifold \(\tilde{G}\) of dimension \(n + 2\)
Given conformal manifold \((M, [g])\) of signature \((p, q), p + q = n\).
Obtain a manifold \(\tilde{\mathcal{G}}\) of dimension \(n + 2\) with an embedded hypersurface \(\mathcal{G} \subset \tilde{\mathcal{G}}\).
Given conformal manifold \((M, [g])\) of signature \((p, q)\), \(p + q = n\). Obtain a manifold \(\tilde{G}\) of dimension \(n + 2\) with an embedded hypersurface \(G \subset \tilde{G}\) and a formal expansion along \(G\) for a metric \(\tilde{g}\) on \(\tilde{G}\) of signature \((p + 1, q + 1)\).
Given conformal manifold \((M, [g])\) of signature \((p, q)\), \(p + q = n\).

Obtain a manifold \(\tilde{\mathcal{G}}\) of dimension \(n + 2\) with an embedded hypersurface \(\mathcal{G} \subset \tilde{\mathcal{G}}\) and a formal expansion along \(\mathcal{G}\) for a metric \(\tilde{g}\) on \(\tilde{\mathcal{G}}\) of signature \((p + 1, q + 1)\).

Let \(\mathcal{G} = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^* M\). Metric bundle.
Given conformal manifold \((M, [g])\) of signature \((p, q), p + q = n\).
Obtain a manifold \(\tilde{G}\) of dimension \(n + 2\) with an embedded hypersurface \(G \subset \tilde{G}\) and a formal expansion along \(G\) for a metric \(\tilde{g}\) on \(\tilde{G}\) of signature \((p + 1, q + 1)\).

Let \(G = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^* M\). Metric bundle.
Dilations \(\delta_s : G \rightarrow G\)
Given conformal manifold \((M, [g])\) of signature \((p, q), p + q = n\).

Obtain a manifold \(\tilde{G}\) of dimension \(n + 2\) with an embedded hypersurface \(G \subset \tilde{G}\) and a formal expansion along \(G\) for a metric \(\tilde{g}\) on \(\tilde{G}\) of signature \((p + 1, q + 1)\).

Let \(G = \{ (x, g_x) : x \in M, g \in [g] \} \subset S^2 T^* M\). Metric bundle.

Dilations \(\delta_s : G \rightarrow G\) \quad \delta_s(x, g_x) = (x, s^2 g_x)\)
Given conformal manifold \((M, [g])\) of signature \((p, q), p + q = n\).
Obtain a manifold \(\tilde{G}\) of dimension \(n + 2\) with an embedded hypersurface \(G \subset \tilde{G}\) and a formal expansion along \(G\) for a metric \(\tilde{g}\) on \(\tilde{G}\) of signature \((p + 1, q + 1)\).

Let \(G = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^* M\). Metric bundle.

Dilations \(\delta_s : G \to G\)

\[\delta_s(x, g_x) = (x, s^2 g_x)\]

Set \(\tilde{G} = G \times (-1, 1)\).
Given conformal manifold \((M, [g])\) of signature \((p, q)\), \(p + q = n\).

Obtain a manifold \(\mathcal{G}\) of dimension \(n + 2\) with an embedded hypersurface \(\mathcal{G} \subset \mathcal{G}\) and a formal expansion along \(\mathcal{G}\) for a metric \(\tilde{g}\) on \(\mathcal{G}\) of signature \((p + 1, q + 1)\).

Let \(\mathcal{G} = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^* M\). Metric bundle.

Dilations \(\delta_s : \mathcal{G} \rightarrow \mathcal{G}\) \(\delta_s(x, g_x) = (x, s^2 g_x)\)

Set \(\mathcal{G} = \mathcal{G} \times (-1, 1)\). Inclusion: \(\iota : \mathcal{G} \rightarrow \mathcal{G}, \quad \iota(z) = (z, 0)\).
Given conformal manifold \((M, [g])\) of signature \((p, q), p + q = n\).
Obtain a manifold \(\tilde{G}\) of dimension \(n + 2\) with an embedded hypersurface \(G \subset \tilde{G}\) and a formal expansion along \(G\) for a metric \(\tilde{g}\) on \(\tilde{G}\) of signature \((p + 1, q + 1)\).

Let \(G = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^* M\). Metric bundle.

Dilations \(\delta_s : G \rightarrow G\)

\[\delta_s(x, g_x) = (x, s^2 g_x)\]

Set \(\tilde{G} = G \times (-1, 1)\).

Inclusion: \(\iota : G \rightarrow \tilde{G}, \ i(z) = (z, 0)\).

The ambient metric \(\tilde{g}\) is a metric on \(\tilde{G}\) of signature \((p + 1, q + 1)\).
Given conformal manifold \((M, [g]) \) of signature \((p, q) \), \(p + q = n \).

Obtain a manifold \(\tilde{\mathcal{G}} \) of dimension \(n + 2 \) with an embedded hypersurface \(\mathcal{G} \subset \tilde{\mathcal{G}} \) and a formal expansion along \(\mathcal{G} \) for a metric \(\tilde{g} \) on \(\tilde{\mathcal{G}} \) of signature \((p + 1, q + 1) \).

Let \(\mathcal{G} = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^* M \). Metric bundle.

Dilations \(\delta_s: \mathcal{G} \rightarrow \mathcal{G} \quad \delta_s(x, g_x) = (x, s^2 g_x) \)

Set \(\tilde{\mathcal{G}} = \mathcal{G} \times (-1, 1) \). Inclusion: \(\iota: \mathcal{G} \rightarrow \tilde{\mathcal{G}}, \quad \iota(z) = (z, 0) \).

The ambient metric \(\tilde{g} \) is a metric on \(\tilde{\mathcal{G}} \) of signature \((p + 1, q + 1) \). Satisfies:
Given conformal manifold \((M, [g])\) of signature \((p, q), p + q = n\).

Obtain a manifold \(\tilde{G}\) of dimension \(n + 2\) with an embedded hypersurface \(G \subset \tilde{G}\) and a formal expansion along \(G\) for a metric \(\tilde{g}\) on \(\tilde{G}\) of signature \((p + 1, q + 1)\).

Let \(G = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^* M\). Metric bundle.

Dilations \(\delta_s : G \rightarrow G\)
\[\delta_s(x, g_x) = (x, s^2 g_x)\]

Set \(\tilde{G} = G \times (-1, 1)\). Inclusion:
\[\iota : G \rightarrow \tilde{G}, \quad \iota(z) = (z, 0)\]

The ambient metric \(\tilde{g}\) is a metric on \(\tilde{G}\) of signature \((p + 1, q + 1)\).
Satisfies:

- \(\delta_s^* \tilde{g} = s^2 \tilde{g}\) Homogeneous
Given conformal manifold \((M, [g])\) of signature \((p, q), p + q = n\).

Obtain a manifold \(\tilde{G}\) of dimension \(n + 2\) with an embedded hypersurface \(G \subset \tilde{G}\) and a formal expansion along \(G\) for a metric \(\tilde{g}\) on \(\tilde{G}\) of signature \((p + 1, q + 1)\).

Let \(G = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^*M\). Metric bundle.

Dilations \(\delta_s : G \to G\) \hspace{1cm} \delta_s(x, g_x) = (x, s^2 g_x)

Set \(\tilde{G} = G \times (-1, 1)\). Inclusion: \(\iota : G \to \tilde{G}, \hspace{0.5cm} \iota(z) = (z, 0)\).

The ambient metric \(\tilde{g}\) is a metric on \(\tilde{G}\) of signature \((p + 1, q + 1)\). Satisfies:

- \(\delta^*_s \tilde{g} = s^2 \tilde{g}\) Homogeneous
- Initial condition on \(G\) determined by the conformal structure
Given conformal manifold \((M, [g])\) of signature \((p, q)\), \(p + q = n\).
Obtain a manifold \(\widetilde{G}\) of dimension \(n + 2\) with an embedded hypersurface \(G \subset \widetilde{G}\) and a formal expansion along \(G\) for a metric \(\widetilde{g}\) on \(\widetilde{G}\) of signature \((p + 1, q + 1)\).

Let \(G = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^* M\). Metric bundle.

Dilations \(\delta_s : G \rightarrow G\) \(\delta_s(x, g_x) = (x, s^2 g_x)\)

Set \(\widetilde{G} = G \times (-1, 1)\). Inclusion: \(\iota : G \rightarrow \widetilde{G}, \quad \iota(z) = (z, 0)\).

The ambient metric \(\widetilde{g}\) is a metric on \(\widetilde{G}\) of signature \((p + 1, q + 1)\).
Satisfies:

- \(\delta_s^* \widetilde{g} = s^2 \widetilde{g}\) Homogeneous
- Initial condition on \(G\) determined by the conformal structure
- \(\text{Ric}(\widetilde{g}) = 0\) to infinite order on \(G\).
Theorem (C. Fefferman-G., 1985) If n is odd, there exists such \tilde{g}, unique to infinite order up to diffeomorphism.
Theorem (C. Fefferman-G., 1985) If n is odd, there exists such \tilde{g}, unique to infinite order up to diffeomorphism.

If (M, g) is real-analytic, then series for \tilde{g} converges.
Theorem (C. Fefferman-G., 1985) If n is odd, there exists such \tilde{g}, unique to infinite order up to diffeomorphism.

If (M, g) is real-analytic, then series for \tilde{g} converges.

If n is even, there is a formal obstruction at order $n/2$.
Theorem (C. Fefferman-G., 1985) If n is odd, there exists such $	ilde{g}$, unique to infinite order up to diffeomorphism.

If (M, g) is real-analytic, then series for \tilde{g} converges.

If n is even, there is a formal obstruction at order $n/2$.

Flat case: for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$,
Theorem (C. Fefferman-G., 1985) If n is odd, there exists such \tilde{g}, unique to infinite order up to diffeomorphism.

If (M, g) is real-analytic, then series for \tilde{g} converges.

If n is even, there is a formal obstruction at order $n/2$.

Flat case: for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$, obtain $\tilde{\mathcal{G}} \subset \mathbb{R}^{p+q+2}$, $\tilde{g} = |dx|^2 - |dy|^2$, where $x \in \mathbb{R}^{p+1}$, $y \in \mathbb{R}^{q+1}$.
Theorem (C. Fefferman-G., 1985) If n is odd, there exists such \tilde{g}, unique to infinite order up to diffeomorphism.

If (M, g) is real-analytic, then series for \tilde{g} converges.

If n is even, there is a formal obstruction at order $n/2$.

Flat case: for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$, obtain $\tilde{G} \subset \mathbb{R}^{p+q+2}$, $\tilde{g} = |dx|^2 - |dy|^2$,

where $x \in \mathbb{R}^{p+1}$, $y \in \mathbb{R}^{q+1}$.

$\mathcal{G} =$ null cone of $|x|^2 - |y|^2$
Leistner-Nurowski Result

Put these together:

\[D \subset TM^5 \xrightarrow{\text{Nurowski}} (M, [g]) \xrightarrow{\text{Ambientmetric}} (\tilde{G}^7, \tilde{g}) \]
Leistner-Nurowski Result

Put these together:

\[D \subset TM^5 \xrightarrow{Nurowski} (M, [g]) \xrightarrow{Ambientmetric} (\tilde{G}^7, \tilde{g}) \]

Produces a metric \(\tilde{g} \) of signature (3, 4) from \(D \).
Put these together:

$$\mathcal{D} \subset TM^5 \xrightarrow{Nurowski} (M, [g]) \xrightarrow{Ambientmetric} (\tilde{G}^7, \tilde{g})$$

Produces a metric \tilde{g} of signature $(3, 4)$ from \mathcal{D}.

Nurowski (2007). Consider $\mathcal{D} \subset T\mathbb{R}^5$ given by

$$F = q^2 + \sum_{k=0}^{6} a_k p^k + bz, \quad a_k, b \in \mathbb{R}$$
Put these together:

\[\mathcal{D} \subset TM^5 \xrightarrow{\text{Nurowski}} (M, [g]) \xrightarrow{\text{Ambientmetric}} (\tilde{G}^7, \tilde{g}) \]

Produces a metric \(\tilde{g} \) of signature \((3, 4)\) from \(\mathcal{D} \).

Nurowski (2007). Consider \(\mathcal{D} \subset T\mathbb{R}^5 \) given by

\[F = q^2 + \sum_{k=0}^{6} a_k p^k + bz, \quad a_k, b \in \mathbb{R} \]

Then can write \(\tilde{g} \) explicitly.
Leistner-Nurowski Result

Put these together:

\[\mathcal{D} \subset T\mathbb{R}^5 \quad \xrightarrow{\text{Nurowski}} \quad (M, [g]) \quad \xrightarrow{\text{Ambientmetric}} \quad (\tilde{\mathcal{G}}^7, \tilde{g}) \]

Produces a metric \(\tilde{g} \) of signature \((3, 4)\) from \(\mathcal{D} \).

Nurowski (2007). Consider \(\mathcal{D} \subset T\mathbb{R}^5 \) given by

\[F = q^2 + \sum_{k=0}^{6} a_k p^k + bz, \quad a_k, b \in \mathbb{R} \]

Then can write \(\tilde{g} \) explicitly. Expansion terminates at order 2.
Put these together:

\[\mathcal{D} \subset T\mathbb{R}^5 \xrightarrow{Nurowski} (M, [g]) \xrightarrow{Ambientmetric} (\tilde{G}^7, \tilde{g}) \]

Produces a metric \(\tilde{g} \) of signature (3, 4) from \(\mathcal{D} \).

Nurowski (2007). Consider \(\mathcal{D} \subset T\mathbb{R}^5 \) given by

\[
F = q^2 + \sum_{k=0}^{6} a_k p^k + bz, \quad a_k, b \in \mathbb{R}
\]

Then can write \(\tilde{g} \) explicitly. Expansion terminates at order 2.

Theorem. (Leistner-Nurowski, 2009) \(F \) as above.

- For all \(a_k, b \), have \(\text{Hol}(\tilde{G}, \tilde{g}) \subset G_2 \)
Put these together:

$$D \subset TM^5 \xrightarrow{Nurowski} (M, [g]) \xrightarrow{Ambientmetric} (\tilde{G}^7, \tilde{g})$$

Produces a metric \tilde{g} of signature $(3, 4)$ from D.

Nurowski (2007). Consider $D \subset T\mathbb{R}^5$ given by

$$F = q^2 + \sum_{k=0}^{6} a_k p^k + b z, \quad a_k, b \in \mathbb{R}$$

Then can write \tilde{g} explicitly. Expansion terminates at order 2.

Theorem. (Leistner-Nurowski, 2009) F as above.

- For all a_k, b, have $\text{Hol}(\tilde{G}, \tilde{g}) \subset G_2$
- If one of $a_3, a_4, a_5, a_6 \neq 0$, then $\text{Hol}(\tilde{G}, \tilde{g}) = G_2$.
Leistner-Nurowski Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_2.
Leistner-Nurowski Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_2.

To show a metric in dimension 7 has holonomy $\subset G_2$, need to construct a parallel 3-form φ of split type.
Leistner-Nurowski Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_2.

To show a metric in dimension 7 has holonomy $\subset G_2$, need to construct a parallel 3-form φ of split type.

For model \mathcal{D} on $S^2 \times S^3 = G_2/P$, have
Leistner-Nurowski Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_2.

To show a metric in dimension 7 has holonomy $\subset G_2$, need to construct a parallel 3-form φ of split type.

For model \mathcal{D} on $S^2 \times S^3 = G_2/P$, have

$\tilde{g} =$ flat metric of signature $(3, 4)$ on \mathbb{R}^7 and
Leistner-Nurowski Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_2.

To show a metric in dimension 7 has holonomy $\subset G_2$, need to construct a parallel 3-form φ of split type.

For model \mathcal{D} on $S^2 \times S^3 = G_2/P$, have

$\tilde{g} = \text{flat metric of signature (3, 4) on } \mathbb{R}^7$ and

$\varphi = \text{the three form on } \mathbb{R}^7$ defining G_2.
Leistner-Nurowski Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_2.

To show a metric in dimension 7 has holonomy $\subset G_2$, need to construct a parallel 3-form φ of split type.

For model \mathcal{D} on $S^2 \times S^3 = G_2/P$, have

$\tilde{g} = $ flat metric of signature $(3, 4)$ on \mathbb{R}^7 and

$\varphi = $ the three form on \mathbb{R}^7 defining G_2.

Leistner-Nurowski write down φ for their F’s explicitly.
Leistner-Nurowski Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_2.

To show a metric in dimension 7 has holonomy $\subset G_2$, need to construct a parallel 3-form φ of split type.

For model \mathcal{D} on $S^2 \times S^3 = G_2/P$, have

$\tilde{g} = \text{flat metric of signature (3, 4) on } \mathbb{R}^7$ and

$\varphi = \text{the three form on } \mathbb{R}^7 \text{ defining } G_2$.

Leistner-Nurowski write down φ for their F’s explicitly.

But what about \tilde{g} for other \mathcal{D}?
Work with Travis Willse.
Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.
Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

- $\text{Hol}(\tilde{g}, \tilde{g}) \subset G_2$ always.
Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

- $\text{Hol}(\tilde{\mathcal{G}}, \tilde{g}) \subset G_2$ always.
- $\text{Hol}(\tilde{\mathcal{G}}, \tilde{g}) = G_2$ for an explicit open dense set of \mathcal{D}.
Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

- $\text{Hol}(\tilde{\mathcal{G}}, \tilde{g}) \subset G_2$ always.
- $\text{Hol}(\tilde{\mathcal{G}}, \tilde{g}) = G_2$ for an explicit open dense set of \mathcal{D}.

So we obtain an infinite-dimensional space of metrics \tilde{g} of holonomy G_2, parametrized by an almost arbitrary generic 2-plane field \mathcal{D}.
Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

- $\text{Hol}(\tilde{\mathcal{G}}, \tilde{g}) \subset G_2$ always.
- $\text{Hol}(\tilde{\mathcal{G}}, \tilde{g}) = G_2$ for an explicit open dense set of \mathcal{D}.

So we obtain an infinite-dimensional space of metrics \tilde{g} of holonomy G_2, parametrized by an almost arbitrary generic 2-plane field \mathcal{D}.

The proof proceeds in 2 steps:
Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

- $\text{Hol}(\tilde{G}, \tilde{g}) \subset G_2$ always.
- $\text{Hol}(\tilde{G}, \tilde{g}) = G_2$ for an explicit open dense set of \mathcal{D}.

So we obtain an infinite-dimensional space of metrics \tilde{g} of holonomy G_2, parametrized by an almost arbitrary generic 2-plane field \mathcal{D}.

The proof proceeds in 2 steps:

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

- $\text{Hol}(\tilde{\mathcal{G}}, \tilde{g}) \subset G_2$ always.
- $\text{Hol}(\tilde{\mathcal{G}}, \tilde{g}) = G_2$ for an explicit open dense set of \mathcal{D}.

So we obtain an infinite-dimensional space of metrics \tilde{g} of holonomy G_2, parametrized by an almost arbitrary generic 2-plane field \mathcal{D}.

The proof proceeds in 2 steps:

1. Construct $\varphi|_{\mathcal{G}}$. Should be homogeneous of degree 3.
2. Extend $\varphi|_{\mathcal{G}}$ to $\tilde{\mathcal{G}}$ to be parallel.
Proof of Step 1.

Step 1. Construct $\varphi|_G$
Proof of Step 1.

Step 1. Construct $\varphi|_G$

Must have $\tilde{\nabla}_X (\varphi|_G) = 0$ for $X \in TG$. ($\tilde{\nabla} =$ connection for \tilde{g})
Step 1. Construct $\varphi|_{\mathcal{G}}$

Must have $\tilde{\nabla}_X (\varphi|_{\mathcal{G}}) = 0$ for $X \in T\mathcal{G}$. ($\tilde{\nabla} = \text{connection for } \tilde{g}$)

Reinterpret this statement:
Says $\varphi|_{\mathcal{G}}$ is a parallel tractor 3-form associated to $(M, [g])$.
Proof of Step 1.

Step 1. Construct $\varphi|_G$

Must have $\tilde{\nabla}_X (\varphi|_G) = 0$ for $X \in T_G$. ($\tilde{\nabla} =$ connection for \tilde{g})

Reinterpret this statement:
Says $\varphi|_G$ is a parallel tractor 3-form associated to $(M, [g])$.

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_2 fixes a 3-form on \mathbb{R}^7.
Step 1. Construct $\varphi|_G$

Must have $\tilde{\nabla}_X (\varphi|_G) = 0$ for $X \in TG$. ($\tilde{\nabla}$ = connection for \tilde{g})

Reinterpret this statement:
Says $\varphi|_G$ is a parallel tractor 3-form associated to $(M,[g])$.

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_2 fixes a 3-form on \mathbb{R}^7.

Other direction is true as well:
Proof of Step 1.

Step 1. Construct $\varphi|_g$

Must have $\tilde{\nabla}_X(\varphi|_g) = 0$ for $X \in TG$. ($\tilde{\nabla} =$ connection for \tilde{g})

Reinterpret this statement:
Says $\varphi|_g$ is a parallel tractor 3-form associated to $(M, [g])$.

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_2 fixes a 3-form on \mathbb{R}^7.

Other direction is true as well:

Theorem. (Hammerl-Sagerschnig, 2009) Nurowski’s conformal structures $(M, [g])$ associated to generic \mathcal{D} are characterized by the existence of a parallel tractor 3-form of split type.
Parallel Extension Theorem

Step 2. Extend $\varphi|_{\tilde{G}}$ to \tilde{G} to be parallel
Parallel Extension Theorem

Step 2. Extend $\varphi|_G$ to \tilde{G} to be parallel

We prove an ambient extension theorem for parallel tractor-tensors.
Parallel Extension Theorem

Step 2. Extend $\varphi|_G$ to \tilde{G} to be parallel.

We prove an ambient extension theorem for parallel tractor-tensors. Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.
Parallel Extension Theorem

Step 2. Extend $\varphi|_G$ to \tilde{G} to be parallel

We prove an ambient extension theorem for parallel tractor-tensors. Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry. Let $\mathcal{T} =$ tractor bundle.
Step 2. Extend $\varphi|_G$ to \tilde{G} to be parallel

We prove an ambient extension theorem for parallel tractor-tensors. Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Let \mathcal{T} = tractor bundle. Tractor-tensor means a section of $\otimes^r \mathcal{T}^*$.
Step 2. Extend $\varphi|_G$ to \tilde{G} to be parallel

We prove an ambient extension theorem for parallel tractor-tensors. Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Let $\mathcal{T} =$ tractor bundle. Tractor-tensor means a section of $\otimes^r \mathcal{T}^*$.

Theorem. Let $(M, [g])$ be a conformal manifold, with ambient metric \tilde{g}. Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.
Step 2. Extend $\varphi|_G$ to \tilde{G} to be parallel

We prove an ambient extension theorem for parallel tractor-tensors. Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Let $\mathcal{T} =$ tractor bundle. Tractor-tensor means a section of $\otimes^r \mathcal{T}^*$.

Theorem. Let $(M, [g])$ be a conformal manifold, with ambient metric \tilde{g}. Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

- If n is odd, then φ has an ambient extension $\tilde{\varphi}$ such that $\tilde{\nabla}\tilde{\varphi}$ vanishes to infinite order along G.

Step 2. Extend $\varphi|_G$ to \tilde{G} to be parallel

We prove an ambient extension theorem for parallel tractor-tensors. Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Let $\mathcal{T} =$ tractor bundle. Tractor-tensor means a section of $\otimes^r \mathcal{T}^*$.

Theorem. Let $(M, [g])$ be a conformal manifold, with ambient metric \tilde{g}. Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

- If n is odd, then φ has an ambient extension $\tilde{\varphi}$ such that $\tilde{\nabla} \tilde{\varphi}$ vanishes to infinite order along G.
- If n is even, then φ has an ambient extension such that $\tilde{\nabla} \tilde{\varphi}$ vanishes to order $n/2 - 1$.
Step 2. Extend $\varphi|_G$ to \tilde{G} to be parallel

We prove an ambient extension theorem for parallel tractor-tensors. Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Let $\mathcal{T} =$ tractor bundle. Tractor-tensor means a section of $\otimes^r \mathcal{T}^*$.

Theorem. Let $(M, [g])$ be a conformal manifold, with ambient metric \tilde{g}. Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

- If n is odd, then φ has an ambient extension $\tilde{\varphi}$ such that $\tilde{\nabla} \tilde{\varphi}$ vanishes to infinite order along G.
- If n is even, then φ has an ambient extension such that $\tilde{\nabla} \tilde{\varphi}$ vanishes to order $n/2 - 1$.

This had been previously proved by Gover for $r = 1$, different proof.
Step 2. Extend $\varphi|_G$ to \tilde{G} to be parallel

We prove an ambient extension theorem for parallel tractor-tensors. Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Let $\mathcal{T} =$ tractor bundle. Tractor-tensor means a section of $\otimes^r \mathcal{T}^*$.

Theorem. Let $(M, [g])$ be a conformal manifold, with ambient metric \tilde{g}. Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

- If n is odd, then φ has an ambient extension $\tilde{\varphi}$ such that $\tilde{\nabla} \tilde{\varphi}$ vanishes to infinite order along G.
- If n is even, then φ has an ambient extension such that $\tilde{\nabla} \tilde{\varphi}$ vanishes to order $n/2 - 1$.

This had been previously proved by Gover for $r = 1$, different proof.

Immediately conclude $\text{Hol}(\tilde{G}, \tilde{g}) \subset G_2$.

Conditions for $\text{Hol}(\tilde{G}, \tilde{g}) = G_2$
Conditions for $\text{Hol}(\tilde{\mathcal{G}}, \tilde{g}) = G_2$

Let $W_{ijkl} = \text{Weyl tensor of } g$, $C_{jkl} = \text{Cotton tensor of } g$.
Let $W_{ijkl} = \text{Weyl tensor of } g$, $C_{jkl} = \text{Cotton tensor of } g$.

Define $L_p : T_p M \times \mathbb{R} \to \otimes^3 T^* p M$ by

$$L(v, \lambda) = W_{ijkl} v^i + C_{jkl} \lambda.$$
Let $W_{ijkl} = \text{Weyl tensor of } g$, $C_{jkl} = \text{Cotton tensor of } g$.

Define $L_p : T_p M \times \mathbb{R} \rightarrow \bigotimes^3 T^*_p M$ by

$$L(v, \lambda) = W_{ijkl} v^i + C_{jkl} \lambda.$$

Impose: L_p is injective.
Let $W_{ijkl} = \text{Weyl tensor of } g$, $C_{jkl} = \text{Cotton tensor of } g$.

Define $L_p : T_p M \times \mathbb{R} \to \bigotimes^3 T^* M$ by

$$L(v, \lambda) = W_{ijkl} v^i + C_{jkl} \lambda.$$

Impose: L_p is injective. Nondegeneracy condition on (W, C).

Conditions for Hol(\tilde{G}, \tilde{g}) = G_2
Let $W_{ijkl} = \text{Weyl tensor of } g$, $C_{jkl} = \text{Cotton tensor of } g$.

Define $L_p : T_p M \times \mathbb{R} \rightarrow \bigotimes^3 T^*_p M$ by

$$L(v, \lambda) = W_{ijkl} v^i + C_{jkl} \lambda.$$

Impose: L_p is injective. Nondegeneracy condition on (W, C).

Let $A \in \Gamma(S^4 \mathcal{D}^*)$ be Cartan’s fundamental curvature invariant for generic distributions $\mathcal{D} \subset M^5$.

Let $W_{ijkl} = $ Weyl tensor of g, $C_{jkl} = $ Cotton tensor of g.

Define $L_p : T_pM \times \mathbb{R} \rightarrow \otimes^3 T^*_pM$ by

$$L(v, \lambda) = W_{ijkl} v^i + C_{jkl} \lambda.$$

Impose: L_p is injective. Nondegeneracy condition on (W, C).

Let $A \in \Gamma(S^4\mathcal{D}^*)$ be Cartan’s fundamental curvature invariant for generic distributions $\mathcal{D} \subset M^5$. A is a binary quartic.
Let $W_{ijkl} = \text{Weyl tensor of } g$, $C_{jkl} = \text{Cotton tensor of } g$.

Define $L_p : T_pM \times \mathbb{R} \to \otimes^3 T^*_pM$ by

$$L(v, \lambda) = W_{ijkl}v^i + C_{jkl}\lambda.$$

Impose: L_p is injective. Nondegeneracy condition on (W, C).

Let $A \in \Gamma(S^4D^*) \text{ be Cartan's fundamental curvature invariant for generic distributions } D \subset M^5$. A is a binary quartic.

Say that A is 3-nondegenerate at p if the only vector $Y \in D_p$ such that $A(X, Y, Y, Y) = 0$ for all $X \in D_p$ is $Y = 0$.
Conditions for $\text{Hol} (\tilde{\mathcal{G}}, \tilde{g}) = G_2$

Let $W_{ijkl} = \text{Weyl tensor of } g$, $C_{jkl} = \text{Cotton tensor of } g$.

Define $L_p : T_p M \times \mathbb{R} \rightarrow \bigotimes^3 T^*_p M$ by

$$L(v, \lambda) = W_{ijkl} v^i + C_{jkl} \lambda.$$

Impose: L_p is injective. Nondegeneracy condition on (W, C).

Let $A \in \Gamma (S^4 \mathcal{D}^*)$ be Cartan’s fundamental curvature invariant for generic distributions $\mathcal{D} \subset M^5$. A is a binary quartic.

Say that A is 3-nondegenerate at p if the only vector $Y \in \mathcal{D}_p$ such that $A(X, Y, Y, Y) = 0$ for all $X \in \mathcal{D}_p$ is $Y = 0$.

Theorem. Given (M, \mathcal{D}) real analytic. If there are $p, q \in M$ so that L_p is injective and A_q is 3-nondegenerate, then \tilde{g} has holonomy $= G_2$.
In particular, have \(\text{Hol}(\tilde{G}, \tilde{g}) = G_2 \) if there is \(p \in M \) so that \(L_p \) is injective and \(A_p \) is 3-nondegenerate.
Conditions for $\text{Hol}(\tilde{\mathcal{G}}, \tilde{g}) = G_2$

In particular, have $\text{Hol}(\tilde{\mathcal{G}}, \tilde{g}) = G_2$ if there is $p \in M$ so that L_p is injective and A_p is 3-nondegenerate.

Each condition is an algebraic condition on the 7-jet of F at p.
In particular, have $\text{Hol}(\tilde{\mathcal{G}}, \tilde{g}) = G_2$ if there is $p \in M$ so that L_p is injective and \mathcal{A}_p is 3-nondegenerate.

Each condition is an algebraic condition on the 7-jet of F at p.

So if the 7-jet of F avoids a particular algebraic set at a single point, then $\text{Hol}(\tilde{\mathcal{G}}, \tilde{g}) = G_2$.
In particular, have $\Hol(\tilde{G}, \tilde{g}) = G_2$ if there is $p \in M$ so that L_p is injective and A_p is 3-nondegenerate.

Each condition is an algebraic condition on the 7-jet of F at p.

So if the 7-jet of F avoids a particular algebraic set at a single point, then $\Hol(\tilde{G}, \tilde{g}) = G_2$.

This is a weak condition, explicitly checkable.