Canonical directions on surfaces in $M^2(c) \times \mathbb{R}$

Marian Ioan Munteanu

Alexandru Ioan Cuza University of Iasi, Romania

Fulbright Visiting Scholar at Michigan State University

J. William Fulbright College of Arts and Sciences
2011 - Spring Lectures
Canonical coordinates and principal directions

1. **The ambient space** $M^2(c) \times \mathbb{R}$
 - Constant Angle Surfaces in $M^2(c) \times \mathbb{R}$

2. **Surfaces in** $S^2 \times \mathbb{R}$

3. **Surfaces in** $H^2 \times \mathbb{R}$
 - Minkowski model of H^2
 - Minimality and Flatness

4. **Surfaces in Euclidean space** \mathbb{E}^3
The ambient space $\mathbb{M}^2(c) \times \mathbb{R}$

- $c = 1 \Rightarrow \mathbb{M}^2(c) = \mathbb{S}^2 \Rightarrow$ the ambient space $\mathbb{S}^2 \times \mathbb{R}$
- $c = -1 \Rightarrow \mathbb{M}^2(c) = \mathbb{H}^2 \Rightarrow$ the ambient space $\mathbb{H}^2 \times \mathbb{R}$
- $c = 0 \Rightarrow \mathbb{M}^2(c) = \mathbb{R}^2 \Rightarrow$ the ambient space $\mathbb{R}^2 \times \mathbb{R} = \mathbb{R}^3$

Problem 1: Constant Angle Surfaces

A problem studied until now consists of the classification and characterization of Constant Angle Surfaces (CAS) in different ambient spaces. A CAS is an orientable surface whose unit normal makes a constant angle, denoted by θ, with a fixed direction.

The complete classification:

Problem 1: Constant Angle Surfaces

A problem studied until now consists of the classification and characterization of Constant Angle Surfaces (CAS) in different ambient spaces. A CAS is an orientable surface whose unit normal makes a constant angle, denoted by θ, with a fixed direction.

The complete classification:

Eugenio Garnica, Oscar Palmas, Gabriel Ruiz-Hernandez, Hypersurfaces making a constant angle with a closed conformal vector.
Problem 1: Constant Angle Surfaces

A problem studied until now consists of the classification and characterization of Constant Angle Surfaces (CAS) in different ambient spaces. A CAS is an orientable surface whose unit normal makes a constant angle, denoted by θ, with a fixed direction.

The complete classification:

Problem 2: Canonical directions

When the ambient is of the form $M^2 \times \mathbb{R}$, a favored direction is \mathbb{R}. It is known that for a constant angle surface in E^3, $S^2 \times \mathbb{R}$ or in $H^2 \times \mathbb{R}$, the projection of $\frac{\partial}{\partial t}$ (where t is the global parameter on \mathbb{R}) onto the tangent plane of the immersed surface, denoted by T, is a principal direction with the corresponding principal curvature identically zero.

Question

Study surfaces in $M^2 \times \mathbb{R}$ such that T remains a principal direction but with the corresponding principal curvature different from 0.
Problem 2: Canonical directions

When the ambient is of the form $M^2 \times \mathbb{R}$, a favored direction is \mathbb{R}. It is known that for a constant angle surface in E^3, $S^2 \times \mathbb{R}$ or in $H^2 \times \mathbb{R}$, the projection of $\frac{\partial}{\partial t}$ (where t is the global parameter on \mathbb{R}) onto the tangent plane of the immersed surface, denoted by T, is a principal direction with the corresponding principal curvature identically zero.

Question

Study surfaces in $M^2 \times \mathbb{R}$ such that T remains a principal direction but with the corresponding principal curvature different from 0.
First answer in $S^2 \times \mathbb{R}$

The characterization of surfaces with a principal direction:

Theorem (Dillen, Fastenakels, Van der Veken, 2009)

Let M be an immersed surface in $S^2 \times \mathbb{R}$ and p a point of M for which $\theta(p) \neq \{0, \frac{\pi}{2}\}$. Then T is a principal direction if and only if M considered as a surface in \mathbb{E}^4 is normally flat.
First answer in $S^2 \times \mathbb{R}$

Proposition (classification result) - Dillen, Fastenakels, Van der Veken, 2009

A surface M immersed in $S^2 \times \mathbb{R}$ is a surface for which T is a principal direction if and only if the immersion F is (up to isometries of $S^2 \times \mathbb{R}$) in the neighborhood of a point p where $\theta(p) \notin \{0, \frac{\pi}{2}\}$ given by

$$F : M \to S^2 \times \mathbb{R} : (x, y) \mapsto (F_1(x, y), F_2(x, y), F_3(x, y), F_4(x))$$

with

$$F_j(x, y) = \int_{y_0}^{y} \alpha_j(v) \sin(\psi(x) + \phi(v)) dv$$

for $j = 1, 2, 3$ where $\phi'(x) = \cos(\theta(x))$, $F_4'(x) = \sin(\theta(x))$, $(\alpha_1, \alpha_2, \alpha_3)$ is a curve in S^2 and $F_1^2 + F_2^2 + F_3^2 = 1$. Moreover, $\alpha_1, \alpha_2, \alpha_3, \psi$ and ϕ are related by

$$\alpha'_j(y) = -\cos(\psi(x) + \phi(y)) \int_{y_0}^{y} \alpha_j(v) \cos(\psi(x) + \phi(v)) dv$$

and

$$-\sin(\psi(x) + \phi(y)) \int_{y_0}^{y} \alpha_j(v) \sin(\psi(x) + \phi(v)) dv.$$
General things in $H^2 \times \mathbb{R}$

Notations:
- $\tilde{M} = H^2 \times \mathbb{R}$ the Riemannian product of $(H^2(-1), g_H)$ and \mathbb{R}
- $\tilde{g} = g_H + dt^2$ the product metric, t the (global) coordinate on \mathbb{R}
- $\tilde{\nabla}$ the Levi Civita connection of \tilde{g}
- $\partial_t := \frac{\partial}{\partial t}$ the unit vector field tangent to the \mathbb{R}-direction
- \tilde{R} either the curvature tensor $\tilde{R}(X, Y) = [\tilde{\nabla}_X, \tilde{\nabla}_Y] - \tilde{\nabla}_{[X,Y]}$, or the Riemann-Christoffel tensor on \tilde{M} defined by $\tilde{R}(W, Z, X, Y) = \tilde{g}(W, \tilde{R}(X, Y)Z)$.
- $F : M \longrightarrow \tilde{M}$ - isometric immersion (dim $M = 2$)
- ξ - a unit normal vector to M, A - its shape operator
- $g = \tilde{g}|_M$ - metric on M, ∇ - corresponding Levi Civita connection

\[(G) \quad \tilde{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad h \text{ the second fundamental form of } M \]
\[(W) \quad \tilde{\nabla}_X \xi = -A_\xi X + \nabla^\perp_X \xi \]

Marian Ioan Munteanu (UAIC)
General things in $H^2 \times \mathbb{R}$

Notations:

- $\tilde{M} = H^2 \times \mathbb{R}$ the Riemannian product of $(H^2(-1), g_H)$ and \mathbb{R}
- $\tilde{g} = g_H + dt^2$ the product metric, t the (global) coordinate on \mathbb{R}
- ∇ the Levi Civita connection of \tilde{g}
- $\partial_t := \frac{\partial}{\partial t}$ the unit vector field tangent to the \mathbb{R}-direction
- \tilde{R} either the curvature tensor $\tilde{R}(X, Y) = [\nabla_X, \nabla_Y] - \nabla_[X,Y]$, or the Riemann-Christoffel tensor on \tilde{M} defined by $\tilde{R}(W, Z, X, Y) = \tilde{g}(W, \tilde{R}(X, Y)Z)$.
- $F: M \longrightarrow \tilde{M}$ - isometric immersion (dim $M = 2$)
- ξ - a unit normal vector to M, A - its shape operator
- $g = \tilde{g}|_M$ - metric on M, ∇ - corresponding Levi Civita connection

\[(G)\quad \tilde{\nabla}_XY = \nabla_XY + h(X,Y),\quad h \text{ the second fundamental form of } M\]
\[(W)\quad \tilde{\nabla}_X\xi = -A_\xi X + \nabla^\perp_X\xi\]
Some useful formulas

Since \(\partial_t := \frac{\partial}{\partial t} \) is of unit length, we decompose it as
\[
\partial_t = T + \cos \theta \, \xi
\]
where
- \(T \) is the projection on \(T(M) \) with \(|T| = \sin \theta \)
- \(\theta \) is the angle function : \(\cos \theta = \tilde{g}(\partial_t, \xi) \).

(E.G.)
\[
R(X, Y, Z, W) = g(AX, W)g(AY, Z) - g(AX, Z)g(AY, W) - g(X, W)g(Y, Z) + g(X, Z)g(Y, W) + g(X, W)g(Y, T)g(Z, T) + g(Y, Z)g(X, T)g(W, T) - g(X, Z)g(Y, T)g(W, T) - g(Y, W)g(X, T)g(Z, T)
\]

(E.C.)
\[
(\nabla_X A) Y - (\nabla_Y A) X = \cos \theta \, (g(X, T)Y - g(Y, T)X)
\]

Computing the Gaussian curvature \(K \), from the equation of Gauss it follows

\[
K = \det A - \cos^2 \theta.
\]

Any vector field \(X \in T(M) \) can be decomposed as

\[
X = X_H + g(X, T)\partial_t
\]
Some useful formulas

Since $\partial_t := \frac{\partial}{\partial t}$ is of unit length, we decompose it as $\partial_t = T + \cos \theta \, \xi$

where

- T is the projection on $T(M)$ with $|T| = \sin \theta$ and
- θ is the angle function: $\cos \theta = \tilde{g}(\partial_t, \xi)$.

(E.G.)

$$R(X, Y, Z, W) = g(AX, W)g(AY, Z) - g(AX, Z)g(AY, W) - g(X, W)g(Y, Z) + g(X, Z)g(Y, W) + g(X, W)g(Y, T)g(Z, T) + g(Y, Z)g(X, T)g(W, T) - g(X, Z)g(Y, T)g(W, T) - g(Y, W)g(X, T)g(Z, T)$$

(E.C.)

$$(\nabla_X A) Y - (\nabla_Y A) X = \cos \theta \left(g(X, T)Y - g(Y, T)X\right)$$

Computing the Gaussian curvature K, from the equation of Gauss it follows

$$K = \det A - \cos^2 \theta.$$
Some useful formulas

Since $\partial_t := \frac{\partial}{\partial t}$ is of unit length, we decompose it as $\partial_t = T + \cos \theta \, \xi$

where

- T is the projection on $T(M)$ with $|T| = \sin \theta$ and
- θ is the angle function: $\cos \theta = \tilde{g}(\partial_t, \xi)$.

\textbf{(E.G.)} $\quad R(X, Y, Z, W) = g(AX, W)g(AY, Z) - g(AX, Z)g(AY, W) - $ $g(X, W)g(Y, Z) + g(X, Z)g(Y, W) + $ $g(X, W)g(Y, T)g(Z, T) + g(Y, Z)g(X, T)g(W, T) - $ $g(X, Z)g(Y, T)g(W, T) - g(Y, W)g(X, T)g(Z, T)$

\textbf{(E.C.)} $\quad (\nabla_X A) Y - (\nabla_Y A) X = \cos \theta \left(g(X, T)Y - g(Y, T)X \right)$

Computing the Gaussian curvature K, from the equation of Gauss it follows

$$K = \det A - \cos^2 \theta.$$
Some useful formulas

Since $\partial_t := \frac{\partial}{\partial t}$ is of unit length, we decompose it as $\partial_t = T + \cos \theta \xi$

where

- T is the projection on $T(M)$ with $|T| = \sin \theta$ and
- θ is the angle function: $\cos \theta = \tilde{g}(\partial_t, \xi)$.

(E.G.)
$$R(X, Y, Z, W) = g(AX, W)g(AY, Z) - g(AX, Z)g(AY, W) - g(X, W)g(Y, Z) + g(X, Z)g(Y, W) + g(X, W)g(Y, T)g(Z, T) + g(Y, Z)g(X, T)g(W, T) - g(X, Z)g(Y, T)g(W, T) - g(Y, W)g(X, T)g(Z, T)$$

(E.C.)
$$(\nabla_X A) Y - (\nabla_Y A) X = \cos \theta (g(X, T)Y - g(Y, T)X)$$

Computing the Gaussian curvature K, from the equation of Gauss it follows

$$K = \det A - \cos^2 \theta.$$

Any vector field $X \in T(M)$ can be decomposed as $X = X_H + g(X, T)\partial_t$.
Proposition (Dillen, M., 2009)

For an arbitrary vector X tangent to M we have

$$\nabla_X T = \cos \theta AX$$ \hspace{1cm} (1)

$$X(\cos \theta) = -g(AX, T).$$ \hspace{1cm} (2)

For $\theta = \text{const.}$, eq. (2) yields $g(AT, X) = 0$, $\forall X \in T(M)$. Hence:

- if $T = 0$ on M, then ∂_t is always normal, so $M \subseteq H^2 \times \{t_0\}$, $t_0 \in \mathbb{R}$.
- if $T \neq 0$ then T is a principal direction with principal curvature 0.

Question

Study surfaces in $H^2 \times \mathbb{R}$ such that T remains a principal direction but with the corresponding principal curvature different from 0.
Proposition (Dillen, M., 2009)

For an arbitrary vector X tangent to M we have

$$\nabla_X T = \cos \theta AX$$ \hspace{1cm} (1)

$$X(\cos \theta) = -g(AX, T).$$ \hspace{1cm} (2)

For $\theta = \text{const.}$, eq. (2) yields $g(AX, T) = 0$, $\forall X \in T(M)$. Hence:

- if $T = 0$ on M, then ∂_t is always normal, so $M \subseteq \mathbb{H}^2 \times \{t_0\}$, $t_0 \in \mathbb{R}$.
- if $T \neq 0$ then T is a principal direction with principal curvature 0.

Question

Study surfaces in $\mathbb{H}^2 \times \mathbb{R}$ such that T remains a principal direction but with the corresponding principal curvature different from 0.
First answers

Further on we suppose that θ is different from 0 and $\frac{\pi}{2}$.

Proposition (Dillen, M., Nistor, to appear Taiwanese J. Math., 2011)

If $\theta \neq 0, \frac{\pi}{2}$, then we can choose local coordinates (x, y) on the surface M isometrically immersed in \tilde{M} with ∂_x in the direction of T such that

$$ g(x, y) = \frac{1}{\sin^2 \theta} dx^2 + \beta^2(x, y) dy^2 \quad (3) $$

$$ A = \left(\begin{array}{cc} \theta_x \sin \theta & \theta_y \sin \theta \\ \theta_y & \sin^2 \theta \beta_x \\ \sin \theta \beta^2 & \cos \theta \beta \end{array} \right) \quad (4) $$

and the functions θ and β are related by the PDE

$$ \frac{\sin^2 \theta}{\cos \theta} \frac{\beta_{xx}}{\beta} + \frac{\sin \theta \theta_x}{\cos^2 \theta} \frac{\beta_x}{\beta} + \frac{\theta_y}{\sin \theta} \frac{\beta_y}{\beta^3} + \left(2 \frac{\cos \theta \theta_y^2}{\sin^2 \theta} - \frac{\theta_{yy}}{\sin \theta} \right) \frac{1}{\beta^2} - \cos \theta = 0. \quad (5) $$
An analogue result formulated for surfaces in $\mathbb{H}^2 \times \mathbb{R}$ having T as principal direction, is the following

Proposition (Dillen, M., Nistor, 2011)

Let M be isometrically immersed in $\mathbb{H}^2 \times \mathbb{R}$ with T a principal direction. Then, we can choose the local coordinates (x, y) such that ∂_x is in the direction of T,

$$g = dx^2 + \beta^2(x, y)dy^2$$

$$A = \begin{pmatrix} \theta_x & 0 \\ 0 & \tan \theta \frac{\beta_x}{\beta} \end{pmatrix}.$$

Moreover, the functions θ and β are related by the PDE

$$\beta_{xx} + \tan \theta \theta_x \beta_x - \beta \cos^2 \theta = 0$$

and $\theta_y = 0$.
Canonical coordinates

Remark

For every two functions θ and β defined on a smooth simply connected surface M such that $\theta_y = 0$ and $\beta_{xx} + \tan \theta \theta_x \beta_x - \beta \cos^2 \theta = 0$ for certain coordinates (x, y), we can construct an isometric immersion $F : M \to \mathbb{H}^2 \times \mathbb{R}$ with the shape operator (7) and such that it has a canonical principal direction.

Remark

Let M be an isometrically immersed surface in $\mathbb{H}^2 \times \mathbb{R}$ such that T is a principal direction. The coordinates (x, y) on M such that ∂_x is collinear with T and the metric g has the form $g = dx^2 + \beta^2(x, y)dy^2$ are called canonical coordinates. Of course, they are not unique. More precisely, if (x, y) and (\bar{x}, \bar{y}) are both canonical coordinates, then they are related by $\bar{x} = \pm x + c$ and $\bar{y} = \bar{y}(y)$, where c is a real constant.
Minkowski model of the hyperbolic plane \(\mathbb{H}^2 \)

Models for the hyperbolic plane:

1. the Klein model
2. the Poincaré disk
3. the upper half plane \(\mathbb{H}^+ \)
4. Minkowski model \(\mathcal{H} \)

\[
\mathbb{H}^2 = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3_1 \mid x_1^2 + x_2^2 - x_3^2 = -1, \ x_3 > 0 \right\}
\]

with Lorentzian metric

\[
\langle \ , \ \rangle = dx_1^2 + dx_2^2 - dx_3^2
\]

having constant Gaussian curvature \(-1\).
Minkowski model of the hyperbolic plane H^2

Models for the hyperbolic plane:

1. the Klein model
2. the Poincaré disk
3. the upper half plane H^+
4. Minkowski model \mathcal{H}

$$H^2 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3_1 \mid x_1^2 + x_2^2 - x_3^2 = -1, \ x_3 > 0 \}$$

with Lorentzian metric

$$\langle \ , \rangle = dx_1^2 + dx_2^2 - dx_3^2$$

having constant Gaussian curvature -1.
Characterization theorem

In order to study under which conditions T is a canonical principal direction, we regard the surface M as a surface immersed in $\mathbb{R}^3_1 \times \mathbb{R}$ (also denoted \mathbb{R}^4_1) having codimension 2. The metric on the ambient space is given by $\tilde{g} = dx_1^2 + dx_2^2 - dx_3^2 + dt^2$. M is given by the immersion $F : M \to \mathbb{R}^3_1 \times \mathbb{R}$, $F = (F_1, F_2, F_3, F_4)$.

Theorem (Dillen, M., Nistor, 2011)

Let M be a surface isometrically immersed in $\mathbb{H}^2 \times \mathbb{R}$. Then T is a principal direction if and only if M is normally flat in \mathbb{R}^4_1.
Classification theorem - version 1

Theorem (Dillen, M., Nistor, 2011)

If $F : M \to \mathbb{H}^2 \times \mathbb{R}$ is an isometric immersion with $\theta \neq 0, \frac{\pi}{2}$, then T is a principal direction if and only if F is given, up to isometries of $\mathbb{H}^2 \times \mathbb{R}$, by

$$F(x, y) = (F_1(x, y), F_2(x, y), F_3(x, y), F_4(x))$$

with

$$F_j(x, y) = A_j(y) \sinh \phi(x) + B_j(y) \cosh \phi(x), \quad j = 1, 3$$

and

$$F_4(x) = \int_0^x \sin \theta(\tau)d\tau, \text{ where } \phi'(x) = \cos \theta.$$ The six functions A_j and B_j are found in one of the following cases

- **Case 1.**

 $$A_j(y) = \int_0^y H_j(\tau) \cosh \psi(\tau)d\tau + c_{1j}$$

 $$B_j(y) = \int_0^y H_j(\tau) \sinh \psi(\tau)d\tau + c_{2j}$$

 $$H_j'(y) = B_j(y) \sinh \psi(y) - A_j(y) \cosh \psi(y)$$
Classification theorem - version 1

Theorem (Dillen, M., Nistor, 2011)

If \(F : M \to \mathbb{H}^2 \times \mathbb{R} \) is an isometric immersion with \(\theta \neq 0, \frac{\pi}{2} \), then \(T \) is a principal direction if and only if \(F \) is given, up to isometries of \(\mathbb{H}^2 \times \mathbb{R} \), by

\[
F(x, y) = (F_1(x, y), F_2(x, y), F_3(x, y), F_4(x))
\]

with \(F_j(x, y) = A_j(y) \sinh \phi(x) + B_j(y) \cosh \phi(x) \), \(j = 1, 3 \) and

\[
F_4(x) = \int_0^x \sin \theta(\tau)d\tau, \text{ where } \phi'(x) = \cos \theta.
\]

The six functions \(A_j \) and \(B_j \) are found in one of the following cases

- **Case 2.**

\[
A_j(y) = \int_0^y H_j(\tau) \sinh \psi(\tau)d\tau + c_{1j}
\]

\[
B_j(y) = \int_0^y H_j(\tau) \cosh \psi(\tau)d\tau + c_{2j}
\]

\[
H_j'(y) = -A_j(y) \sinh \psi(y) + B_j(y) \cosh \psi(y)
\]
Classification theorem - version 1

Theorem (Dillen, M., Nistor, 2011)

If \(F : M \rightarrow H^2 \times \mathbb{R} \) is an isometric immersion with \(\theta \neq 0, \frac{\pi}{2} \), then \(T \) is a principal direction if and only if \(F \) is given, up to isometries of \(H^2 \times \mathbb{R} \), by

\[
F(x, y) = (F_1(x, y), F_2(x, y), F_3(x, y), F_4(x))
\]

with \(F_j(x, y) = A_j(y) \sinh \phi(x) + B_j(y) \cosh \phi(x), \ j = 1, 3 \) and

\[
F_4(x) = \int_0^x \sin \theta(\tau) d\tau, \text{ where } \phi'(x) = \cos \theta. \text{ The six functions } A_j \text{ and } B_j \text{ are found in one of the following cases}
\]

- **Case 3.**

\[
A_j(y) = \pm \int_0^y H_j(\tau) d\tau + c_{1j}
\]

\[
B_j(y) = \int_0^y H_j(\tau) d\tau + c_{2j}
\]

\[
H_j'(y) = c_{2j} \mp c_{1j}
\]
Classification theorem - version 1

Theorem (Dillen, M., Nistor, 2011)

If $F : M \to \mathbb{H}^2 \times \mathbb{R}$ is an isometric immersion with $\theta \neq 0, \frac{\pi}{2}$, then T is a principal direction if and only if F is given, up to isometries of $\mathbb{H}^2 \times \mathbb{R}$, by

$$F(x, y) = (F_1(x, y), F_2(x, y), F_3(x, y), F_4(x))$$

with $F_j(x, y) = A_j(y) \sinh \phi(x) + B_j(y) \cosh \phi(x)$, $j = 1, 3$ and $F_4(x) = \int_0^x \sin \theta(\tau) d\tau$, where $\phi'(x) = \cos \theta$. The six functions A_j and B_j are found in one of the following cases

where $H = (H_1, H_2, H_3)$ is a curve on the de Sitter space \mathbb{S}^2_1, ψ is a smooth function on M and $c_1 = (c_{11}, c_{12}, c_{13})$, $c_2 = (c_{21}, c_{22}, c_{23})$ are constant vectors.
Classification theorem - version 2

Theorem (Dillen, M., Nistor, 2011)

If \(F: M \rightarrow \mathbb{H}^2 \times \mathbb{R} \) is an isometric immersion with angle function \(\theta \neq 0, \frac{\pi}{2} \), then \(T \) is a principal direction if and only if \(F \) is given locally, up to isometries of the ambient space by

\[
F(x, y) = (A(y) \sinh \phi(x) + B(y) \cosh \phi(x), \chi(x))
\]

where \(A(y) \) is a regular curve in \(S^2_1 \), \(B(y) \) is a regular curve in \(\mathbb{H}^2 \), such that \(\langle A, B \rangle = 0 \), \(A' \parallel B' \) and where \((\phi(x), \chi(x)) \) is a regular curve in \(\mathbb{R}^2 \). The angle function \(\theta \) of \(M \) depends only on \(x \) and it coincides with the angle function of the curve \((\phi, \chi) \). In particular, we may arc length reparametrize \((\phi, \chi) \); then \((x, y) \) are canonical coordinates and \(\theta'(x) = \kappa(x) \), the curvature of \((\phi, \chi) \).
Clasiffication theorem - version 3

Theorem (Dillen, M., Nistor, 2011)

Let \(F : M \to \mathbb{H}^2 \times \mathbb{R} \) be an isometrically immersed surface \(M \) in \(\mathbb{H}^2 \times \mathbb{R} \), with \(\theta \neq 0, \pi/2 \). Then \(M \) has \(T \) as a principal direction if and only if \(F \) is given, up to rigid motions of the ambient space, by

\[
F(x, y) = \left(f(y) \cosh \phi(x) + N_f(y) \sinh \phi(x), \chi(x) \right)
\]

where \(f(y) \) is a regular curve in \(\mathbb{H}^2 \) and \(N_f(y) = \frac{f(y) \otimes f'(y)}{\sqrt{\langle f'(y), f'(y) \rangle}} \) represents the normal of \(f \). Moreover, \((\phi, \chi) \) is a regular curve in \(\mathbb{R}^2 \) and the angle function \(\theta \) of this curve is the same as the angle function of the surface parameterized by \(F \).
Examples

Now, we would like to give some examples of surfaces that can be retrieved from the classification theorem. Let us consider first $\psi(y) = 0$ for all y in Case 1, getting

$$A_j(y) = \int_0^y H_j(\tau) d\tau + c_{1j}, \quad B_j(y) = c_{2j}, \quad H'_j(y) = -\int_0^y H_j(\tau) d\tau - c_{1j}.$$

The parametrization F in this case is given by

Example (rotational surface)

$$F(x, y) = \left(\sin y \sinh \left(\int_0^x \cos \theta(\tau) d\tau \right), \cos y \sinh \left(\int_0^x \cos \theta(\tau) d\tau \right), \cosh \left(\int_0^x \cos \theta(\tau) d\tau \right), \int_0^x \sin \theta(\tau) d\tau \right).$$
Examples

Concerning **Case 3** in classification theorem, let us choose for example \(c_1 = (0, 1, 0) \), \(c_2 = (0, 0, 1) \) and \(c_3 = (1, 0, 0) \). The parametrization in this case is given by

Example

\[
F(x, y) = \left(A(y) \sinh \left(\int_0^x \cos \theta(\tau) d\tau \right) + B(y) \cosh \left(\int_0^x \cos \theta(\tau) d\tau \right), \int_0^x \sin \theta(\tau) d\tau \right)
\]

where \(A(y) = \left(y, 1 - \frac{y^2}{2}, \frac{y^2}{2} \right) \) and \(B(y) = \left(y, -\frac{y^2}{2}, 1 + \frac{y^2}{2} \right) \).
Examples

If $\theta(x) = x^2$, the surface is

Example

$$F(x, y) = \left(A(y) \sinh \left(\sqrt{\frac{\pi}{2}} C\left(\sqrt{\frac{2}{\pi}} x \right) \right) + B(y) \cosh \left(\sqrt{\frac{\pi}{2}} C\left(\sqrt{\frac{2}{\pi}} x \right) \right), \right.$$

$$\sqrt{\frac{\pi}{2}} S\left(\sqrt{\frac{2}{\pi}} x \right)$$

where C and S are the traditional notations for the Fresnel integrals $C(z) = \int_0^z \cos \left(\frac{\pi t^2}{2} \right) dt$ respectively $S(z) = \int_0^z \sin \left(\frac{\pi t^2}{2} \right) dt$. The curve involved in the classification theorem is given in this case by $(\phi(x), \chi(x)) = (C(x), S(x))$, known as Cornu spiral.
Minimality

Theorem (Dillen, M., Nistor, 2011)

Let \(M \) be a surface isometrically immersed in \(\mathbb{H}^2 \times \mathbb{R} \), with \(\theta \neq 0, \pi/2 \). Then \(M \) is minimal with \(T \) as principal direction if and only if the immersion is, up to isometries of the ambient space, locally given by

\[
F : M \longrightarrow \mathbb{H}^2 \times \mathbb{R}
\]

\[
F(x, y) = \left(\frac{b(x)}{\sqrt{1 + c_1^2 - c_2^2}}, \frac{\sqrt{a^2(x)} + 1}{\sqrt{1 + c_1^2 - c_2^2}} \sinh y, \frac{\sqrt{a^2(x)} + 1}{\sqrt{1 + c_1^2 - c_2^2}} \cosh y, \chi(x) \right)
\]

\[
F(x, y) = \left(\frac{\sqrt{a^2(x)} + 1}{\sqrt{c_2^2 - c_1^2 - 1}} \cos y, \frac{\sqrt{a^2(x)} + 1}{\sqrt{c_2^2 - c_1^2 - 1}} \sin y, \frac{b(x)}{\sqrt{c_2^2 - c_1^2 - 1}}, \chi(x) \right)
\]

\[
F(x, y) = \left(b(x), \frac{b(x)}{2} (1 - y^2) - \frac{1}{2b(x)}, \frac{b(x)}{2} (1 + y^2) + \frac{1}{2b(x)}, \chi(x) \right)
\]
Minimality

Theorem (cont.)

Let M be a surface isometrically immersed in $\mathbb{H}^2 \times \mathbb{R}$, with $\theta \neq 0, \frac{\pi}{2}$. Then M is minimal with T as principal direction if and only if the immersion is, up to isometries of the ambient space, locally given by

where

$$\chi(x) = \int_0^x \frac{1}{\sqrt{a^2(\tau) + 1}} \, d\tau$$

with $a(x) = c_1 \cosh x + c_2 \sinh x$, $b(x) = a'(x)$ and $c_1, c_2 \in \mathbb{R}$.
Flatness

Theorem (Dillen, M., Nistor, 2011)

Let M be a surface isometrically immersed in $\mathbb{H}^2 \times \mathbb{R}$, with $\theta \neq 0, \frac{\pi}{2}$. Then M is flat with T as principal direction if and only if the immersion is, up to isometries of the ambient space, locally given by $F : M \rightarrow \mathbb{H}^2 \times \mathbb{R}$

\[
F(x, y) = \left(\frac{x}{\sqrt{c + 1}} \cos y, \frac{x}{\sqrt{c + 1}} \sin y, \frac{\sqrt{x^2 + c + 1}}{\sqrt{c + 1}}, \chi(x) \right)
\]

\[
F(x, y) = \left(\frac{\sqrt{x^2 + c + 1}}{\sqrt{-c - 1}}, \frac{x}{\sqrt{-c - 1}} \sinh y, \frac{x}{\sqrt{-c - 1}} \cosh y, \chi(x) \right)
\]

\[
F(x, y) = \left(xy, \frac{x}{2} (1 - y^2) - \frac{1}{2x}, \frac{x}{2} (1 + y^2) + \frac{1}{2x}, \chi(x) \right)
\]

where

\[
\chi(x) = \int_{x}^{x} \frac{\sqrt{\tau^2 + c}}{\sqrt{\tau^2 + c + 1}} d\tau, \quad c \in \mathbb{R}.
\]
The upper half plane model of \mathbb{H}^2

Method 1: Use **Cayley transformations** from \mathcal{H} to H^+

\[
\begin{align*}
x_1 &= \frac{X}{Y} \\
x_2 &= \frac{X^2 + Y^2 - 1}{2Y} \\
x_3 &= \frac{X^2 + Y^2 + 1}{2Y}.
\end{align*}
\]

\[
\begin{align*}
X &= \frac{x_1}{x_3 - x_2} \\
Y &= \frac{1}{x_3 - x_2}.
\end{align*}
\]

Method 2: Analytical approach - solving the problem in \mathbb{H}^+ and then showing the consistence of results with \mathcal{H}:

A.I. Nistor, *On a class of surfaces in $\mathbb{H}^+ \times \mathbb{R}$*, preprint 2010.
The upper half plane model of \mathbb{H}^2

Method 1: Use Cayley transformations from \mathcal{H} to \mathbb{H}^+

\[x_1 = \frac{X}{Y} \]
\[x_2 = \frac{X^2 + Y^2 - 1}{2Y} \]
\[x_3 = \frac{X^2 + Y^2 + 1}{2Y} \]
\[X = \frac{x_1}{x_3 - x_2} \]
\[Y = \frac{1}{x_3 - x_2} \]

Method 2: Analytical approach - solving the problem in \mathbb{H}^+ and then showing the consistence of results with \mathcal{H}:

A.I. Nistor, *On a class of surfaces in $\mathbb{H}^+ \times \mathbb{R}$*, preprint 2010.
Canonical coordinates in \mathbb{E}^3

The characterization theorem:

Theorem (M., Nistor, 2011)

Let M be an isometrically immersed surface in \mathbb{E}^3. Let (x, y) be orthogonal coordinates on M such that T is collinear to ∂_x. Then, T is a principal direction on M everywhere if and only if $\theta_y = 0$.

Canonical coordinates in \mathbb{E}^3

The classification theorem:

Theorem (M., Nistor, 2011)

A surface M isometrically immersed in \mathbb{E}^3 with T a canonical principal direction is given (up to isometries of \mathbb{E}^3) by one of the following cases:

- **Case 1.**

 $$F : M \rightarrow \mathbb{E}^3, \quad F(x, y) = \left(\phi(x)(\cos y, \sin y) + \gamma(y), \int_0^x \sin \theta(\tau) d\tau \right)$$

 where

 $$\gamma(y) = \left(-\int_0^y \psi(\tau) \sin \tau d\tau, \int_0^y \psi(\tau) \cos \tau d\tau \right)$$

- **Case 2. (Cylinders)**

 $$F : M \rightarrow \mathbb{E}^3, \quad F(x, y) = \left(\phi(x) \cos y_0, \phi(x) \sin y_0, \int_0^x \sin \theta(\tau) d\tau \right) + y\gamma_0$$

 where $\gamma_0 = (-\sin y_0, \cos y_0, 0)$, $y_0 \in \mathbb{R}$, $\phi'(x) = \cos \theta$.

Marian Ioan Munteanu (UAIC)
Theorem (M., Nistor, 2011)

Let M be a surface isometrically immersed in \mathbb{E}^3. Then M is a minimal surface with T a principal direction if and only if the immersion is, up to isometries of the ambient space, given by

$$F : M \rightarrow \mathbb{E}^3$$

$$F(x, y) = \left(\sqrt{x^2 + c^2} \cos y, \sin y, \ln (x + \sqrt{x^2 + c^2}) \right), \ c \in \mathbb{R}.$$

Remark

Moreover, we notice that this surface can be obtained rotating the catenary around the Oz-axis. Hence, we obtain that the only minimal surface in the Euclidean space with a canonical principal direction is the catenoid.
Theorem (M., Nistor, 2011)

Let M be a surface isometrically immersed in \mathbb{E}^3. Then M is a flat surface with T a principal direction if and only if the immersion is, up to isometries of the ambient space, given by

$$F : M \to \mathbb{E}^3, \quad F(x, y) = \left(\phi(x) \cos y_0, \phi(x) \sin y_0, \int_0^x \sin \theta(\tau) d\tau \right) + y \gamma_0$$

where $\gamma_0 = (- \sin y_0, \cos y_0, 0), \ y_0 \in \mathbb{R}$. Here $\phi(x)$ represents a primitive of $\cos \theta$.

Notice that this is Case 2. (Cylinders) from the classification theorem.
Thank you for attention!
Thank you for attention!