Hugh Churchill

Hugh Churchill

Assistant Professor

(ARSC)-Arts & Sciences


Phone: 479-575-7235

Download vcard


Visit Website

Download CV

Quantum devices have properties that are enabled or enhanced by quantum effects, either by material design, nanostructuring, or both.  My group combines physics, materials science, and electrical engineering to fabricate and measure nanoscale electronic and optoelectronic quantum devices.  We are currently building laboratory capabilities for electronic transport measurements at temperatures down to 10 mK and also visible to near infrared cryogenic optoelectronic experiments.

2D Materials

Materials with layered structures can be peeled apart so that 2D crystals with thicknesses of one or a few atoms can be isolated and studied. We use techniques that take advantage of the weak out-of-plane bonds in these materials to pick up and stack them into vertical heterostructures. Hundreds of layered materials are known, but modifications of only the three most commonly studied of them -- graphene, black phosphorus, and transition metal dichalcogenides such as MoS2 -- continuously span the range of band gaps between 0 and 2 eV.  These metals and semiconductors, combined with the large band gap insulator hexagonal boron nitride, provide the ingredients to make a wide variety of electronic and optoelectronic devices.  These flexible and nearly transparent materials also have interesting physical properties including extremely strong electron-electron interactions and a valley pseudospin degree of freedom.

PHYS 2074, University Physics II

PHYS 3613, Modern Physics

PHYS 3923H, The Science of Music and Sound

PHYS 502V, The Physics of 2D Materials

PHYS 5413, Quantum Mechanics I

Ph.D., Physics,
Harvard University, 2012

A.M., Physics,
Harvard University, 2008

B.A., Physics and Mathematics,
Oberlin College, 2006

B.M., Tuba Performance,
Oberlin Conservatory of Music, 2006

Complete publication list (Google Scholar)

Selected recent publications:

R. Basnet, M. H. Doha, T. Hironaka, K. Pandey, S. Davari, K. M. Welch, H. O. H. Churchill, and J. Hu, "Growth and Strain Engineering of Trigonal Te for Topological Quantum Phases in Non-Symmorphic Chiral Crystals," Crystals 9, 486 (2019).

Josh P. Thompson, M. Hasan Doha, Peter Murphy, Jin Hu, and Hugh O. H. Churchill, “Exfoliation and Analysis of Large-area, Air-Sensitive Two-Dimensional Materials,” J. Vis. Exp. 143, e58693 (2019).

E. Andharia, T. P. Kaloni, G. J. Salamo, S.-Q. Yu, H. O. H. Churchill, and S. Barraza- Lopez, “Exfoliation energy, quasi-particle bandgap, and excitonic properties of selenium and tellurium atomic chains,” Physical Review B 98, 035420 (2018).

H. O. H. Churchill, S.-Q. Yu, G. J. Salamo, T. Hironaka, X. Hu, J. Stacy, and I. Shih, “Toward Single Atom Chains with Exfoliated Tellurium,” Nanoscale Research Letters 12, 488 (2017).

Presidential Early Career Award for Scientists and Engineers


ORAU Powe Junior Faculty Award

AFOSR Young Investigator

Connor Faculty Fellowship, University of Arkansas

Pappalardo Postdoctoral Fellowship, MIT

White Prize for Excellence in Teaching, Harvard

IBM Ph.D. Fellow

American Physical Society Apker Award for Undergraduate Research

NSF Graduate Research Fellow

Phi Beta Kappa, Sigma Xi, Pi Kappa Lambda