Huaxiang Fu

Huaxiang Fu


(ARSC)-Arts & Sciences


Phone: 479-575-8608

Download vcard



  • Predicting Materials Properties via Computational Approach.

  • Developing Computational Approach for New Properties.


Properties which we are interested in:
Structural, Mechanical, Electromechanical, Electronic, Optical, Electrical, and Transport Properites.
We also investigate many-body effects and lattice vibrations.


Materials which we are interested in:
(1) Semiconductors (bulk and nanostructures),
(2) Ferroelectric and piezoelectric perovksite oxides (bulk and nanostructures),
(3) Organic-inorganic hybrid composites.

(I) Courses taught or being taught

  • Undergraduate courses:

    (1) General Physics
    Textbook: Cutnell and Johnson, "Physics"

    (2) Statics
    Textbook: J.L. Meriam and L.G. Kraig, "Statics"

    (3) Mechanics of Materials
    Textbook: Riley, Sturges, Morris, "Mechanics of Materials"

  • (4) University Physics II

  • (5) E & M (undergraduate)

  • Textbook: D.J. Griffiths, "Introduction to Electrodynamics"

  • (6) Programing using Fortran 90/95
    Textbook: Chapman, "Fortran 90/95 for Scientists and Engineers"

    (7) Computational Physics using C++
    Textbook: DeVries, "Computational Physics"; Prata, "C++ Primer Plus"

    (8) Physics for Architects II
    Textbook: Y. Salu, "Physics for Architects"

    (9) Thermal Physics
    Textbook: D.V. Schroeder "Thermal Physics"


    Graduate Courses:

    (10) Statistical Mechanics
    Textbook: Pathria, "Statistical Mechanics"

    (11) Solid State Physics
    Textbook: Ashcroft/Mermin, "Solid State Physics"


    (12) Optical Properties of Materials
    Textbook: Yu and Cardona, "Fundamentals of Semiconductors"

    (13) Advanced Solid State Physics


    (14) Physics at the Nanoscale


    (15) Quantum Mechanics (I and II)
    Textbook: R. Shankar, "Principles of Quantum Mechanics"

    (16) Mathematical Methods
    Textbook: Arfken, Weber, and Harris, "Mathematical Methods for Physicists"

Ph. D. Fudan University, China, 1994

Postdoctoral Associate, National Renewable Energy Lab, Colorado (1995-1998);
Geophysical Lab, Carnegie Institution of Washington, DC (1999-2000).

Dr. Fu did his Ph.D. research under Professors Xie Xide and Ye Ling, and joined the University of Arkansas in 2002. His research interest is on the first-principles studies of bulks and nanomaterials. He is also interested in methodology, and recently initiated the study of nanoferroelectrics.


  1. H. Fu, and L. Ye;
    Adsorption of potassium on a Si(111) surface,
    Surface Science, 250 (1991) L373.

  2. H. Fu, L. Ye, and Xide Xie;
    A theoretical study of various effects on the wavelength of photoluminescence in silicon nanostructures,
    J. Phys. C 5 (1993) 1221.

  3. H. Fu, L. Ye, and Xide Xie;
    Optical properties of Si nanostructures,
    Phys. Rev. B 48 (1993) 10978.

  4. Xun Wang, D. Huang, L. Ye, M. Yang, P. Hao, X.Y. Hou, Huaxiang Fu, and Xide Xie;
    Pinning of Photoluminescence Peak Positions for Light-Emitting Porous Silicon: An Evidence of Quantum Size Effect,
    Phys. Rev. Lett. 71 (1993) 1265.

  5. H. Fu, L. Ye, and Xide Xie;
    Optical properties for Graphene Microtubules of Different Geometries,
    Solid State Commun. 91 (1994) 191.

  6. H. Fu and Xide Xie;
    Transport properties through 1D-1D'-1D quantum system,
    Phys. Rev. B 50 (1994) 15009.

  7. H. Fu, L. Ye, K. Zhang and Xide Xie;
    Chemisorption of Mn on a GaAs(110) surface,
    Surf. Sci. 341 (1995) 273-281.

  8. O.I. Micic, M. H. Cheong, Huaxiang Fu, Alex Zunger, J. Sprague, A. Macarenhasas, and A. J. Nozik;
    Size-dependent spectroscopy of InP quantum dots,
    J. Phys. Chem. 101 (1997) 4904-4912.

  9. A. Franceschetti, L.-W. Wang, Huaxiang Fu, and Alex Zunger,
    Long-range versus short-range exchange interactions in semiconductor quantum dots,
    Phys. Rev. B (Rapid Commun.) 58 (1998) R13367.

  10. A. Franceschetti, H. Fu, L.-W. Wang, and A. Zunger,
    Many-body pseudopotential theory of excitons in InP and CdSe quantum dots,
    Phys. Rev. B 60 (1999) 1819.

  11. A. Williamson, A. Franceschetti, H. Fu, L.-W. Wang, and A. Zunger,
    Indirect band gap in quantum dots made from direct-gap bulk materials,
    J. Electr. Material 28 (1999) 414.

  12. H. Fu and A. Zunger;
    Local-density-derived semiempirical nonlocal pseudopotentials for InP with applications to large quantum dots,
    Phys. Rev. B 55 (1997) 1642-1653.

  13. H. Fu and A. Zunger;
    InP quantum dots: electronic structure, surface effects and the red-shifted emission,
    Phys. Rev. B 56 (1997) 1496-1508.

  14. H. Fu, L.-W. Wang, and A. Zunger;
    Comparison of the k$\cdot $p and the direct diagonalization approached for describing the electronic structure of quantum dots,
    Appl. Phys. Lett. 71 (1997) 3433.

  15. H. Fu, L.-W. Wang, and A. Zunger;
    Applicability of the k.p method to the electronic structures of quantum dots,
    Phys. Rev. B 57 (1998) 9971-9987.

  16. H. Fu and A. Zunger;
    Quantum-size effects on the pressure-induced direct-to-indirect band gap transition in InP quantum dots,
    Phys. Rev. Lett. 80 (1998) 5397.

  17. H. Fu and A. Zunger;
    Excitons in InP quantum dots,
    Phys. Rev. B (Rapid Commun.) 57 (1998) R15064.

  18. H. Fu, L.-W. Wang, and A. Zunger,
    Excitonic exchange splitting in bulk semiconductors,
    Phys. Rev. B 59 (1999) 5568.

  19. H. Fu, V. Ozolins, and A. Zunger;
    Phonons in GaP quantum dots,
    Phys. Rev. B 59 (1999) 2881.

  20. H. Fu and R.E. Cohen,
    Polarization rotation mechanism for ultrahigh electromechanical response in single crystal piezoelectrics,
    Nature (London), 403 (2000) 281.

  21. X.Y. Huang, J. Li and H. Fu,
    The first covalent organic-inorganic networks of hybrid chalcogenides: structures that may lead to a new type of quantum wells,
    J. Am. Chem. Soc. 122 (2000) 8789.

  22. S. Stolbov, H. Fu, R.E. Cohen, L. Bellaiche, D. Vanderbilt
    Comparison of Electromechanical properties of BaTiO3 between LAPW and a model Hamiltonian
    in "Fundamental Physics of Ferroelectrics" (AIP, New York, 2000), page 151.

  23. R.E. Cohen, E. Heifets, and H. Fu
    First-principles computation of elasticity of Pb(ZrTi)O3: the importance of elasticity in piezoelectrics
    in "Fundamental Physics of Ferroelectrics" (AIP, New York, 2001), page 11.

  24. H. Fu and R.E. Cohen,
    Piezoelectric response from rotating polarization
    in "Fundamental Physics of Ferroelectrics" (AIP, New York, 2000), page 143-150.

  25. H. Fu,
    Electric-field effect in InP quantum films,
    Phys. Rev. B 64 (2001) 075303.

  26. H. Fu,
    Stark shifts, band-edge transitions, and intrinsic optical dipoles in spherical InP quantum dots under electric fields
    Phys. Rev. B 65 (2002) 045320.

  27. H. Fu,
    Band-edge states and optical properties of ordered Pb(Zr0.5Ti0.5)O3 from first principles
    in "Fundamental Physics of Ferroelectrics" (AIP, New York, 2002), page 17-25.

  28. W. Su, X.Y. Huang, J. Li and H. Fu,
    Crystal of semiconducting quantum dots built on covalently bonded T5 [In28Cd6S54]
    J. Am. Chem. Soc. 124 (2002) 12944.

  29. H. Fu and O. Gulseren
    Piezoelectric Pb(Zr0.5Ti0.5)O3: Interplay of atomic ordering, ferroelectric soft modes, and pressure
    Phys. Rev. B 66 (2002) 214114.

  30. R.J. Ellingson, J.L. Blackburn, J. Nedeljkovic, G. Rumbles, M. Jones, H. Fu and A. Nozik
    Theoretical and experimental investigation of electronic structure and relaxation of colloidal nanocrystalline indium phosphide quantum dots
    Phys. Rev. B 67 (2003) 075308.

  31. H. Fu and L. Bellaiche
    First-principles determination of electromechanical responses of solids under finite electric fields
    Phys. Rev. Lett. 91 (2003) 057601.

  32. H. Fu and L. Bellaiche
    Off-center atomic displacements in BaTiO3 quantum dots
    in "Fundamental Physics of Ferroelectrics" (AIP, New York, 2003), p 139-145, ed. P.K. Davies and D.J. Singh

  33. H. Fu and L. Bellaiche
    Ferroelectricity in barium titante quantum dots and wires
    Phys. Rev. Lett. 91 (2003) 257601.

  34. H. Fu and J. Li
    Density-functional study of organic-inorganic hybrid single crystal ZnSe(C2H8N2)1/2
    J. Chem. Phys. 120 (2004) 6721.

  35. I.I. Naumov, L. Bellaiche, and H. Fu
    Unusual phase transitions in ferroelectric nanodisks
    Nature (London) 432 (2004) 737.

  36. I.I. Naumov and H. Fu
    Phonon structure in SrTiO3 under finite electric fields: First-principles density functional approach
    Phys. Rev. B 72 (2005) 012304.

  37. D. Karanth and H. Fu
    Large electromechanical response in ZnO and its microscopic origin
    Phys. Rev. B 72 (2005) 064116.

  38. A. Nazzal and H. Fu
    Organic-inorganic hybrid semiconductor ZnSe(C2H8N2)1/2 under hydrostatic pressure
    Phys. Rev. B 72 (2005) 075202.

  39. A. Nazzal and H. Fu (with Lin-Wang Wang)
    Electronic properties and tunability in Si quantum rings
    J. Appl. Phys. 98 (2005) 083703

  40. I.I. Naumov and H. Fu
    Spontaneous polarization in one-dimensional Pb(ZrTi)O3 nanowires
    Phys. Rev. Lett. 95 (2005) 247602

  41. I.I. Naumov and H. Fu
    A new method for determining dipole-dipole energy in 1D and 2D systems
    Cond-mat 0505497 (2005) (This paper can be found only in archive site; it is not intended for publication elsewhere)

  42. I. Ponomareva, I. Naumov, I. Kornev, L. Bellaiche, H. Fu
    Modelling of nanoscale ferroelectrics from atomistic simulations,
    Current Opinion in Solid State and Materials Science 9 (2006) 114

  43. D. Karanth and H. Fu
    Polarization ratio and effective mass in InP nanowires: effect of crystallographic axis
    Phys. Rev. B 74 (2006) 155312

  44. I.I. Naumov and H. Fu
    Phase transformation path in Pb(ZrTi)O3 nanoparticles under homogeneous electric fields
    Phys. Rev. Lett. 98 (2007) 077603.

  45. Y. Zhang, Z. Islam, Y. Ren, P.A. Parilla, S.P. Ahrenkiel, P.L. Lee, A. Mascrenhas, M.J. McNevin, X.-Y. Huang, J. Li, I. Naumov and H. Fu
    Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal
    Phys. Rev. Lett. 99 (2007) 215901.

  46. Z. Alahmed and H. Fu
    First-principles determination of chemical potentials and vacancy formation energies in PbTiO3 and BaTiO3
    Phys. Rev. B 76 (2007) 224101.

  47. Z. Alahmed and H. Fu
    Polar semiconductor ZnO under inplane tensile strain
    Phys. Rev. B 77 (2008) 045213.

  48. I.I. Naumov and H. Fu
    Cooperative response of Pb(ZrTi)O3 nanoparticles to curled electric fields
    Phys. Rev. Lett. 101 (2008) 197601.

  49. Y. Yao and H. Fu
    Theory of the structure of electronic polarization
    Phys. Rev. B 79 (2009) 014103.

  50. A. Nazzal and H. Fu
    Comparative theoretical study of the size dependent electronic and optical properties in CdS and CdSe spherical nanocrystals
    Journal of Computational and Theoretical Nanoscience (invited article), 6 (2009) 1277-1289. Manuscript copy

  51. Y. Yao and H. Fu
    Density-functional theory study of Polarization saturation in strained ferroelectrics
    Phys. Rev. B. 80 (2009) 035126.

  52. Y. Yao and H. Fu
    Strain dependencies of energetic, structural, and polarization properties in tetragonal (PbTiO3)/(SrTiO3) and (BaTiO3)/(SrTiO3) superlattices: a comparative study with bulks
    arXiv: 1004.2878, submitted to PRB.

  53. H. Fu
    Unusual properties of nanoscale ferroelectrics
    (invited book chapter, Oxford Handbook of Nanoscience and Technology, Oxford University Press, 2010)

  54. Y. Yao and H. Fu
    Influence of rotational instability on the polarization structure of SrTiO3
    Phys. Rev. B 82 (2010) 174119.

  55. Y. Yao and H. Fu
    Charged vacancies in ferroelectric PbTiO3: Formation energies, optimal Fermi region, and influence on local polarization
    Phys. Rev. B 84 (2011) 064112.

  56. X. Fu, I.I. Naumov, and H. Fu
    Collective dipole behavior and unusual morphotropic phase boundary in ferroelectric PZT nanowires
    Nano. Lett. 13 (2013) 491.

  57. A. Raeliarijaona, S. Singh, H. Fu, and L. Bellaiche
    Predicted coupling of the electromagnetic angular momentum density with magnetic moments
    Phys. Rev. Lett. 110 (2013) 137205.

  58. H. Fu
    Tunability of giant Rashba spin splitting in BiTeI
    Phys. Rev. B 87 (2013) 075139.

  59. R. Adhikari and H. Fu
    Interesting properties of ferroelectric PZT nanotube array embedded in matrix medium
    J. Appl. Phys. 114 (2013) 044105.

  60. A. Raeliarijaona and H. Fu
    Various evidences for the unusual polarization behaviors in epitaxially strained (111) BaTiO3
    J. Appl. Phys. 115 (2014) 054105.

  61. R. Adhikari and H. Fu
    Structureal and electronic properties of LaO delta-doped SrTiO3 caused by epitaxial strain
    J. Appl. Phys. 116 (2014) 123712.

  62. H. Fu
    Physical constraint and its consequence for hyperferroelectrics
    J. Appl. Phys. 116 (2014) 164104.

  63. A. Raeliarijaona and H. Fu
    Mode sequence, frequency change of non-soft phonons, and LO-TO splitting in strained tetragonal BaTiO3
    Phys. Rev. B 92 (2015) 094303.

  64. A. Raeliarijaona and H. Fu
    Persistence of strong and switchable ferroelectricity despite vacancies 
    Sci. Rep. 7 (2017) 41301.

  65. A. Raeliarijaona and H. Fu
    Ferromagnetism in ferroelectric BaTiO3 induced by vacancies: Sensitive dependence on charge state, origin of magnetism, and temperature range of existence,
    Phys. Rev. B 96 (2017) 144431.

  66. H. Fu
    Topological ferroelectric phases by mode-selective phonon excitation, 
    Phys. Rev. B 98 (2018) 134111.

  67. R. Adhikari and H. Fu,
    Hyperferroelectricity in ZnO: Evidence from analytic formulation and numerical calculations, 
    Phys. Rev. B 99 (2019) 104101.