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Hypergraph decomposition is a relatively new area of research that developed naturally

from questions in combinatorics. A common type of combinatorial problem involves partitioning

classes of incidence structures into isomorphic copies of a smaller structure. In graph theory, this

type of research is known as graph decomposition. That is, we search for ways to decompose the 

complete graph of order v, denoted Kv, into isomorphic copies of a particular smaller graph, 

denoted H. The problem of determining all values of v for which an H-decomposition of Kv 

exists is known as the spectrum problem for H

A graph H is defined as an ordered pair (V(H), E(H)), where V(H) is the set of elements 

called vertices and E(H) is a set of 2-element subsets of V(H) called edges. |V(H)| is called the 

order of H and |E(H)| is called the size. Hypergraphs are generalizations of graphs. If every edge 

contains exactly k vertices, we call the hypergraph k-uniform. Thus a graph can also be called a

2-uniform hypergraph. For my thesis, I am interested in decomposing the complete 3-uniform 

hypergraph of order v into isomorphic copies of my particular graph, denoted as 

P7 = ({v1, v2, … , v7},{{v1, v2, v3},{v2, v3, v4},{v4, v5, v6},{v5, v6, v7}}) and shown below:

P7 is a 3-uniform 4-path of order 7. This means there are four edges and seven vertices, 

with exactly three vertices per edge. My methods are based on several existing results, most 

notably what I will refer to as the Fundamental Lemma for hypergraph decomposition. The 

Fundamental Lemma provides the necessary conditions for finding an H-decomposition of Kv, 

based on the fact that the number of edges in H must divide the number of the edges in Kv, which

follows as the edges in the isomorphic copies of H partition the edges in Kv. Prior research says 

that these necessary conditions are asymptotically sufficient as v approaches infinity [5]. As I 



expect the same to be true for P7, my thesis will be significant to the developing area of 

hypergraph decomposition as it will settle the spectrum problem for a currently unsettled 

hypergraph and contribute to the library of known decompositions.

The method that I will use to settle the spectrum problem for P7 will be searching for 

patterns by drawing graphs and calculating the edge lengths. This will be done manually, with 

some assistance from python code to generate lists of difference classes. Difference classes are 

groupings used to partition all possible edges in a complete graph based on the distances between

the vertices. The set of edges contained in a given difference class is called the orbit of that 

difference class. For example, the edge incident with the vertices 0, 2, and 8 in K9 would be in 

the difference class of (1,2,6). Such a grouping is obtained by finding the difference between 

each vertex modulo 9 and arranging them lexicographically. I will use a spreadsheet to track the 

edges and ensure that each complete graph has been fully decomposed. For efficiency, 

decompositions will be done cyclically or r-pyramidally whenever possible. 

Cyclic decomposition occurs when applying the isomorphism i ↦i+1 to V(H) preserves 

the difference classes of the edges in H. This requires the difference classes to all contain exactly

the same number of edges. With this requirement, we can choose one representative edge from

each difference class and obtain the (v−¿1) remaining edges in each difference class by applying

the aforementioned isomorphism, a process we call clicking. 

Occasionally we encounter short orbits, which is when certain difference class(es) 

contain fewer edges than the others. We use fixed points to force difference classes of the same 

size. We denote fixed points as ∞i and note that ∞i ↦∞i when we click it. For example, K12 

contains 220 edges, which are partitioned into eighteen difference classes of size 12 and one 

difference class of size 4. If we let V(K12)=ℤI1⋃{∞}, then our 220 edges are partitioned into 

twenty difference classes of size 11. Since cyclic decomposition is the most efficient way to find 

a decomposition, fixed points allow us to find a similar structure called r-pyramidal 

decomposition when cyclic decomposition is not possible. R-pyramidal decompositions are 

obtained in the same fashion as cyclic ones, but using one or more fixed points.

The Fundamental Lemma tells us that the values of v for which a P7-decomposition of Kv 

exists are v≡0,1,2,4,6 (mod 8) [4]. We can break this down by representing the complete graph 

Kv as (
v

8
¿ groups of 8 vertices, with every possible edge connecting these groups. We can either 



have an edge contained completely in one grouping, between two groupings, or between three 

groupings. In the case that v≡1,2,4,6 (mod 8), we also have free vertices that do not complete a 

full grouping. Thus, we must also account for the edges between loose vertices with one or two 

groupings, as well as those contained completely in the loose vertices. This method of building 

Kv allows us to find several smaller structures that together make up the complete graph.

My thesis will also explain methods of “building” necessary pieces to decompose the 

complete graph. Hypergraphs of smaller size are easier to deal with as there are fewer possible 

combinations of edges, with fewer copies of the graph needed. We can further decompose the 

necessary pieces to settle the spectrum problem to work more efficiently. For example, if we 

need to find a decomposition of the complete tripartite graph K8,8,8, we can instead find K4,4,4 and 

automatically obtain the former. Using these tools, in my thesis I will attempt to settle the 

spectrum problem for P7.
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